• Title/Summary/Keyword: Computational analysis

Search Result 9,266, Processing Time 0.03 seconds

Computational Structural Engineering -Recent Developments and Applications (전산 구조 공학의 연구동향)

  • 최창근;유원진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.3-14
    • /
    • 1998
  • Computational structural engineering is the base on which most of the achievements of engineering and physics are built. Since most of the theory underlying physical phenomena is involved differential equations for which closed forms of solution are seldom possible, the numerical approximation is necessary for a quantitative solution. Some areas where progress and research on computational mechanics are currently active are discussed. In the first part of this paper the development of the improved non-conforming elements for the analysis of plates and shells is described. Recent developments in the adaptive analysis for the structural and the wind problem and meshless method are also discussed in the second part.

  • PDF

The Study on Correlation of Cognition on Software Education with Improvement of Computational Thinking

  • Han, Oakyoung;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.93-100
    • /
    • 2019
  • The interest in the Fourth Industrial Revolution along with the development of ICT makes the software get the attention of the world. This phenomenon naturally leads to the concern for software education. Learning software coding is not easy for students whose major is in humanities or social sciences. This paper is a study of how cognition on software education affects to education of computational thinking. For research method, moderator variables were adopted on the proposed research model to prove that positive cognition can derive good influence on improvement of computational thinking. To find out moderator variables of the research model, we have conducted the questionnaire over three years for total of 928 students who took the software coding courses. As the result of the study, we proved that the positive cognition on software education can make the better improvement of computational thinking within proper moderator variables.

Preferences for Supercomputer Resources Using the Logit Model

  • Hyungwook Shim;Jaegyoon Hahm
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.261-267
    • /
    • 2023
  • Public research, which requires large computational resources, utilizes the supercomputers of the National Supercomputing Center in the Republic of Korea. The average utilization rate of resources over the past three years reached 80%. Therefore, to ensure the operational stability of this national infrastructure, specialized centers have been established to distribute the computational demand concentrated in the national centers. It is necessary to predict the computational demand accurately to build an appropriate resource scale. Therefore, it is important to estimate the inflow and outflow of computational demand between the national and specialized centers to size the resources required to construct specialized centers. We conducted a logit model analysis using the probabilistic utility theory to derive the preferences of individual users for future supercomputer resources. This analysis shows that the computational demand share of specialized centers is 59.5%, which exceeds the resource utilization plan of existing specialized centers.

Evaluation of Computational Thinking through Code Analysis of Elementary School Students' Scratch Projects (초등학생의 스크래치 프로젝트 코드 분석을 통한 컴퓨팅 사고력 평가)

  • Park, Juyeon
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.3
    • /
    • pp.207-217
    • /
    • 2019
  • In order to improve computational thinking, elementary schools have been using 'Scratch' to provide basic programming education. However, the study on evaluation of computational thinking is at an early stage. Therefore, this study evaluated the conceptual level of computational thinking using the scratch code analyzing. For this, Dr. Scratch was used to analyze 179 scratch projects. The results showed that the conceptual level of computational thinking of most elementary students was at the developing level, and that it varied according to gender and production style, showed the lowest level of logic and abstraction, and improved computational thinking during programming. This study is meaningful in that it provides implications for the improvement of teaching methods and self-directed evaluation in learning.

Aha, CST and CFD !

  • Kim, S.J.;Kim, M.K.;Moon, J.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.9-18
    • /
    • 2009
  • This paper presents the state of the art of computational structures technology(CST) and comparison of two computational mechanics - CST and CFD, to the CFD engineers. Classical mechanics is based on the five classical axioms which describe the motion and behaviors of the continuum materials like solid structures and fluids. Computational structures technology uses the finite element method to solve the governing equation, whereas finite volume method is generally used in CFD. A few famous commercial structural analysis programs and DIAMOND/IPSAP will be introduced. DIAMOND/IPSAP is the efficient parallel structural analysis package developed by our research team. DIAMOND/IPSAP shows the better performance than the commercial structural analysis software not only in the parallel computing environments but also in a single computer.

  • PDF

A Computational Analysis and An Experimental Study on the effects of Concrete Shrinkage and Creep in Bridge Widening (교량 확폭시 콘크리트의 건조수축 및 크리이프의 영향에 관한 실험적 연구 및 해석)

  • 장동일;조병완;홍성욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.163-170
    • /
    • 1994
  • The widening of bridges under traffic condition brings to many problems. One of these is the internal stresses caused by different creep and shrinkage behavior of the existing bridge and that of the widened Bridge. This study was conducted to examine the effects of different creep and shrinkage behaviors between concretes. The results are as follows; Comparing the computational analysis results with the experimental study, it is shown that finite element analysis used in this study was well accorded with experimental results. And considering the shrinkage effects in widened bridges, joining-construction using the expanding concrete between the existing and widened bridge after at least three months from the day of completion of new bridge, is recommended.

  • PDF

Application of computational technologies to R/C structural analysis

  • Hara, Takashi
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.97-110
    • /
    • 2011
  • In this paper, FEM procedure is applied to the static and dynamic analyses of R/C structures. Simple R/C shell structure is solved by using FEM procedures and the experimental evaluations are performed to represent the applicability of FEM procedure to R/C structures. Also, R/C columns are analyzed numerically and experimentally. On the basis of these results, FEM procedures are applied to the R/C cooling tower structures assembled by huge R/C shell structure and a lot of discrete R/C columns. In this analysis, the parallel computing procedures are introduced into these analyses to reduce the computational effort. The dynamic performances of R/C cooling tower are also solved by the application of parallel computations as well. From the numerical analyses, the conventional FEM procedures combined with computational technologies enables us to design the huge R/C structures statically and dynamically.

Photon Counting Linear Discriminant Analysis with Integral Imaging for Occluded Target Recognition

  • Yeom, Seok-Won;Javidi, Bahram
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2008
  • This paper discusses a photon-counting linear discriminant analysis (LDA) with computational integral imaging (II). The computational II method reconstructs three-dimensional (3D) objects on the reconstruction planes located at arbitrary depth-levels. A maximum likelihood estimation (MLE) can be used to estimate the Poisson parameters of photon counts in the reconstruction space. The photon-counting LDA combined with the computational II method is developed in order to classify partially occluded objects with photon-limited images. Unknown targets are classified with the estimated Poisson parameters while reconstructed irradiance images are trained. It is shown that a low number of photons are sufficient to classify occluded objects with the proposed method.

An Efficient Analysis of Framed-Tube Structures (고층 튜브 구조물의 효율적 해석)

  • 이동근;김남희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.133-138
    • /
    • 1992
  • The three dimensional analysis of Framed-Tube structures is neither easy nor efficient because of longer computational time, large memory requirement, tedious input preparation and bulky output. An efficient analysis model for framed-tube structure is proposed in this study. The proposed model can save the computational effort by using the assumption of the rigid floor diaphragm effect and matrix condensation technique. Moreover, it is develpoed by assembling two dimensional frames using the link degrees of freedom which are temporary used to satisfy the vertical displacement compatibility at the corners of a framed-tube. The accuracy and the efficiency of this analytical model is established by comparing with the results using the computer code SAPIV which is based on the three dimensional finite element model.

  • PDF

Aeroelastic Analysis of Bridge Girder Section Using Navier-Stokes Equations (Navier-Stokes 방정식을 이8한 교량 구조물의 공탄성 해석)

  • Park, Sung-Jong;Kwon, Hyuk-Jun;Yoo, Jae-Han;Lee, In;Han, Jae-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.235-242
    • /
    • 2003
  • This paper deals with numerical analysis of static and dynamic wind effects on civil engineering structures. Aeroelastic analysis becomes a prime criterion to be confirmed during the structural design because the long-span suspension bridges are prone to the aerodynamic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. The aeroelastic simulation is carried out using both Computational Fluid Dynamic(CFD) and Computational Structural Dynamic(SCD) schemes.

  • PDF