• Title/Summary/Keyword: Computational Structure Dynamics

Search Result 418, Processing Time 0.023 seconds

Vibration Analysis of a Turbo-Machinery Blade Considering Rotating and Flow Effect (회전 및 유동효과를 고려한 터보기계 블레이드의 진동해석)

  • Joung, Kyu-Kang;Shin, Seung-Hoon;Park, Hee-Yong;Kim, Dong-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.519-522
    • /
    • 2010
  • Flow-induced vibration analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics has been developed in order to investigate detailed dynamic responses of designed compressor blades. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Effects of vortex generators on the wind load of a flat roof: A computational study

  • Zhao, Yagebai;Deng, Xiaolong;Zhang, Hongfu;Xin, Dabo;Liu, Zhiwen
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Vortex generators are commonly used in mechanical engineering and the aerospace industry to suppress flow separation owing to their advantages of simple structure, economic viability, and high level of efficiency. Owing to the flow separation of the incoming wind on the leading edge, a suction area is formed on the roof surface, which results in a lifting effect on the roof. In this research, vortex generators were installed on the windward surface of a flat roof and used to disturb to roof flow field and reduced suction based on flow control theory. Computational fluid dynamics (CFD) simulations were performed in this study to investigate the effects of vortex generators on reduce suction. It was determined that when the vortex generator was installed on the top of the roof on the windward surface, it had a significant control effect on reduce suction on the roof leading edge. In addition, the influence of parameters such as size, placement interval, and placement position of the vortex generator on the control effect of the roof's suction is also discussed.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

A Study on the Ventilation Improvement of Diesel Locomotive Engine Load Test Building using Computational Fluid Dynamics (전산유체역학을 이용한 디젤엔진 부하시험장의 환기 개선에 관한 연구)

  • Park Duckshin;Jeong Byungcheol;Cho Youngmin;Park Byunghyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2005
  • The aim of this study is to relieve the poor ventilation problem of the diesel locomotive engine load test building, located in an urban area. This paper evaluates the ventilation performances of the studied load test building based on the temperature measurement experiment and the computational fluid dynamics (CFD) during the engine load test. The temperature rise caused by the radiator blower of the building was turned out to be the main cause of disturbing the thermal conditions of the building. The indoor temperature distributions simulated by Fluent were validated with the temperature measurement results obtained from the studied building. The simulation results indicated that the comfort condition of this building was poor We suggested several remedial changes in the duct structure of this building for the improvement of the comfort conditions. In addition, a prototype drawing combining several improved design options was proposed. and then the simulation of the temperature distribution in the proposed prototype was performed. The result indicated that the indoor thermal condition of this proposed building was improved when compared with that of the current building.

Optimum Design for an Air Current Pulverizing Blade Using the Computational Fluid Dynamics (CFD분석을 통한 기류식 분쇄기 날개부의 최적설계)

  • Kim, Gun-hoi;Kim, Han-bit
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.8-14
    • /
    • 2020
  • In the air current pulverizing type grinding method, the blade wings fitted inside a casing are rotated at a high speed to generate a cornering air current, which facilitates the collision of materials with one another, leading to the pulverizing phenomenon. In contrast to mechanical grinding, grit pulverizing leads to fine grinding and less acid waste and degeneration of the material. Moreover, this approach prevents the loss of nutritional value, while allowing the milling grain to have an excellent texture. However, the existing air current pulverizing type machines consist of prefabricated blades, which cannot be rotated at a speed higher than 5,000 rpm. Consequently, the grinding process becomes time consuming with a low productivity. To overcome these problems, in this study, the shape and structure of the air current pulverizing type wings were optimized to allow rapid grinding at more than 8,000 rpm. Moreover, the optimal design for the ripening parts for the air current pulverizing type device was determined by performing a computational fluid dynamics analysis based on airflow analyses to produce machinery that can grinding materials to the order of micrometers.

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Molecular dynamics study on initial growth behavior of amorphous carbon film under various incidence angles

  • Joe, Min-Woong;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.310-310
    • /
    • 2011
  • Morphological evolution of amorphous carbon film is investigated by molecular dynamics simulation. Here, energetic carbon atoms (75 eV) are deposited on the diamond (001) substrate to find effect of incidence angles. At normal and near-normal incidences ($0^{\circ}{\sim}30^{\circ}$) atomically smooth surfaces are observed during their growth. However, rough surfaces emerge and develop into a ripple structure at grazing incidences ($60^{\circ}{\sim}70^{\circ}$). The different growth modes according to the incidence angles can be described by impact-induced displacements of atoms. Downhill transport along any sloped surfaces is predominant for the case of normal incidence. As the incidence angles become grazing, uphill transport is allowed along the surfaces, which have smaller slopes than incidence angle, so the surface features can be amplified. Impact-induced transport and self-shadowing effect can be responsible to the initial growth of seeding structures at a grazing incidence, which would be grown up as tilted columnar structures in further depositions.

  • PDF

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

Seismic Response Analysis of a MW Class Wind-Turbine Considering Applied Wind Loads (풍하중 효과를 고려한 MW급 풍력발전기 타워의 지진응답 해석)

  • Choi, Hyun-Chul;Kim, Dong-Hyun;Kim, Dong-Man;Park, Kang-Kyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.209-215
    • /
    • 2010
  • In this study, seismic response analyses of a MW class wind-turbine have been conducted considering applied wind-loads using advanced computational method based on CFD and FEM. Typical lateral and vertical acceleration levels induced by earthquake is also considered herein. Practical numerical method for seismic response analysis of wind-turbine tower models are presented in the time-domain and the effects of wind load and seismic excitation for responses are compared to each other. It is importantly shown that possible earthquake effect during typical operating conditions should be taken into account in the design of huge wind-turbine tower systems because of its enormous inertia characteristics for induced maximum stress level.

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF