• Title/Summary/Keyword: Computational Load

Search Result 1,714, Processing Time 0.023 seconds

Load Balancing Algorithm for Parallel Computing of Design Problem involving Multi-Disciplinary Analysis (다분야통합해석에 기반한 설계문제의 병렬처리를 위한 부하분산알고리즘)

  • Cho, Jae-Suk;Chu, Min-Sik;Song, Yong-Ho;Choi, Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.327-332
    • /
    • 2007
  • An engineering design problem involving Multi-Disciplinary Analysis(MDA) generally requires a large amounts of CPU time for the entire design process, and therefore Multiple Processing System (MPS) are essential to reduce the completion time. However, when applying conventional parallel processing techniques, all of the CAE S/W required for the MDA should be installed on all the servers making up NIPS because of characteristic of MDA and it would be a great expense in CAE S/W licenses. To solve this problem, we propose a Weight-based Multiqueue Load Balancing algorithm for a heterogeneous MPS where performance of servers and CAE S/W installed on each server are different of each other. To validate the performance, a computational experiments comparing the First Come First Serve algorithm and our proposed algorithm was accomplished.

  • PDF

A CRL Distribution Scheme Minimizing the Time for CRL Processing of Vehicles on Vehicular Communications

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.73-80
    • /
    • 2018
  • Certification revocation list(CRL) is needed for excluding compromised, faulty, illegitimate vehicle nodes and preventing the use of compromised cryptographic materials in vehicular communications. It should be distributed to vehicles resource-efficiently and CRL computational load of vehicles should not impact on life-critical applications with delay sensitive nature such as the pre-crash sensing that affords under 50msec latency. However, in the existing scheme, when a vehicle receives CRL, the vehicle calculates linkage values from linkage seeds, which results in heavy computational load. This paper proposes, a new CRL distribution scheme is proposed, which minimizes the time for CRL processing of vehicles. In the proposed scheme, the linkage value calculation procedure is performed by road-side unit(RSU) instead of the vehicle, and then the extracted linkage values are relayed to the vehicle transparently. The simulation results show that the proposed scheme reduces the CRL computational load dramatically, which would minimize impact on life-critical applications' operations with low latency.

A Study on the Presumption of Geometrically Nonlinear Buckling Load of the Single Layer Layer Latticed Dome (단층 래티스 돔의 기하학적 비선형 좌굴하중 추정에 관한 연구)

  • Lee Jung-Hyun;Choi Il-Sub;Lee Sang-Ju;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.12-19
    • /
    • 2005
  • The single layer latticed dome is very sensitive on the slenderness ratio and half open angle of the elements, load condition and the connection type because it is organized by a lot of thin elements, so we have to use the geometrically nonlinear buckling load when the buckling behavior of the structures is analyzed But, it is very difficult to design the single layer latticed domes considered all conditions. Therefore the purpose of this paper is to propose the appropriate design method of the single layer latticed dome considered the geometrically nonlinear buckling load in base on the linear buckling load by the eigen-value analysis.

  • PDF

A Study on the Effect of a Series of Trucks on Dynamic load Factor (연속 차량하중에 의한 충격하중의 영향에 관한 연구)

  • 황의성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.105-110
    • /
    • 1992
  • This study deals with the effect of a series of moving trucks on the Dynamic Load Factor (DLF). The DLF is calculated by investigating the load effect of moving trucks. Therefore, analytical models for frocks, bridge, and road profiles were developed and dynamic structural analysis computer program were developed. Then the DLFs are calculated as a ratio of maximum dynamic load effect and maximum static load effect. Trucks used in this study are 5 axle semi tractor-trailer with the weight of 36 and 54 ton. Simply supported prestressed concrete box girder bridges with 20 and 40m span length are selected. From the results of the DLF for various headway distances, they show a very scattered and relatively high values of the DLF in case of a 20m span length bridge. For a 40m span length bridge, the results show less scattered and small increase of the DLF compared to a 20m span length bridge.

  • PDF

Development of Load Factors Based on Optimum Reliability Analysis Model (하중 계수에 기초한 최적신뢰성해석 모델 개발)

  • 이증빈;신형우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.134-139
    • /
    • 1992
  • This study introduces simple derivation of optimum load factors based on both cornell's MFOSM (Mean First Order End Moment) methods and Lind - Hasofers AFOSM (Advanced First Order 2nd Moment) methods and demonstrates the relationship between the optimum reliability, the load factors, the probability distributions selected to model the load, and a measure of relative failure cost. Although some of the cost parameters cannot be evaluated accurately and the upper tail characteristics of the distributions of the random loads remain uncertainty, this optimum reliability formulation provides insight on which Parameters are most significant in selecting appropriate load criteria for structure design.

  • PDF

Automatic Feedrate Adjustment for 2D Profile Milling (2차원 윤곽가공에서 이송률 자동 조정)

  • 고기훈;서정철;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.175-183
    • /
    • 2000
  • Proposed in this paper is a model-bated AFA (automatic feedrate-adjustment) method for maintaining smooth cutting-loads (i.e., cutting-force) during 2D-profile milling. Before the cutting-force model was established, some assumptions were verified through a series of preliminary cutting experiments (The results found that the curving-force was independent of the cutting speed and the cutting action at the cutter bosom). From the data obtained during the main cutting experiments, a “chip-load/cutting-force model”representing the cutting-force as a function of the chip-load (i.e., effective cutting-depth) and a feedrate is proposed. Based on the model. an AFA scheme for maintaining smooth cutting-force by adjusting the feedrate (i.e., F-code) according to the changes in chip-load was proposed. To check the validity of the proposed AFA scheme. another set of cutting experiments was conducted by using feedrate-adjusted NC-data while monitoring the actual machining processes using an accelerometer. The experimental results showed that the proposed AFA-scheme was quite effective.

  • PDF

Shape Design Sensitivity Analysis for Stability of Elastic Structure (탄성 구조물의 안정성을 고려한 형상설계 민감도해석)

  • Choi Joo-Ho;Yang Wook-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.841-846
    • /
    • 2006
  • This paper addresses the method for the shape design sensitivity analysis of the buckling load in the continuous elastic body. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Though the buckling problem is more efficiently solved by the structural elements such as beam and shell, the elastic solids are considered in this paper because the solid elements can be used in general for any kind of structures whether they are thick or thin. The initial stress and buckling analysis is carried out by the commercial analysis code ANSYS. The sensitivity is computed by using the mathematical package MATLAB using the results of ANSYS. Several problems including straight and curved beams under compressive load, ring under pressure load, thin-walled section are chosen to illustrate the efficiency of the presented method.

  • PDF

Dynamic Instability Analysis of Euler Column under Impact Loading (충격하중을 받는 Euler기둥의 동적좌굴 해석)

  • 김형열
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • An explicit direct time integration method based solution algorithm is presented to predict dynamic buckling response of Euler column. On the basis of large deflection beam theory, a plane frame finite element is formulated and implemented into the solution algorithm. The element formulation takes into account geometrical nonlinearity and overall buckling of steel structural frames. The solution algorithm employs the central difference method. Using the computer program developed by the author, dynamic instability behavior of Euler column under impact loading is investigated by considering the time variation of load, load magnitude, and load duration. The free vibration of Euler column caused by a short duration impact load is also studied. The validity and efficiency of the present formulation and solution algorithm are verified through illustrative numerical examples.

  • PDF