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Dynamic Instability Analysis of Euler Column under Impact Loading
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Abstract

An explicit direct time integration method based solution algorithm is presented to predict dynamic
buckling response of Euler column, On the basis of large deflection beam theory, a plane frame finite
element is formulated and implemented into the solution algorithm. The element formulation takes into
account geometrical nonlinearity and overall buckling of steel structural frames. The solution algor-
ithm employs the central difference method. Using the computer program developed by the author,
dynamic instability behavior of Euler column under impact loading is investigated by considering the
time variation of load, load magnitude, and load duration. The free vibration of Euler column caused by
a short duration impact load is also studied. The validity and efficiency of the present formulation and
solution algorithm are verified through illustrative numerical examples.

Keywords : buckling, column, finite element method, impact load, dynamic buckling

1. INTRODUCTION 1s because the currently available finite el-
ement solution procedures for nonlinear dy-

In nonlinear load-deflection analysis of struc- namic analysis are generally based on the im-
tural stability problems, the difficulty is enhan plicit direct integration methods. This method
ced when dynamic loading is considered. This requires a great deal of additional computa-
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tional effort in assembling the structure stiff-
ness matrix and solving the resulting simul-
taneous linear equations for every time step.
For this reason, the implicit method becomes
inefficient, especially for nonlinear transient
analysis problems.” In addition, due to ill-con-
ditioning of the stiffness matrix, this type of
finite element formulation is susceptible to nu-
merical difficulties in certain cases of structur-
al instability problems.

An alternative solution procedure, namely
the explicit direct time integration method
shown to be a simple but efficient solution pro-
cedure to predict accurately and efficiently
the transient response of structures.? Unlike
the implicit method, being free of numerical ili
-conditioning, most explicit methods can be
carried out until the progressive structural fail-
ure of the structure occurs, It is noted, how-
ever, that a major drawback of the explicit
method is in its inefficiency in inducing viable
static solutions,

In this paper, an efficient dynamic buckling
analysis solution algorithm has been developed
for progressive instability analysis of columns.
The explicit direct integration method is util-
ized to overcome the difficulty in nonlinear dy-
namic analysis. On the basis of large deflection
beam theory, a plane frame element is formul-
ated. The two node element possesses three
degrees of freedom per node. Using the ex-
plicit method of solution algorithm, a computer
code is developed, and its validity is verified
through illustrative examples. Dynamic buck-
ling behavior of a geometrically perfect pin-
ended column, which refers to as Euler column
herein, under impact loading is investigated.
Dynamic loading parameters which play an im-
portant role in predicting the buckling re-
sponse of Euler column are identified.
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2. DESCRIPTION OF ANALYSIS PROCEDURE

The overall solution algorithm developed in
this study is based on a solution methodology
which refers to as the predictive structural
analysis procedure.” The analysis procedure is
predictive in nature because the realistic re-
sponse of structures is described in a step-by-
step manner as the time is increased and the
load is incremented.

Throughout the analysis process, a load is
applied to a structure in increments. At each
prescribed step of loading, the structure reac-
hes a new equilibrium condition and the des-
ired information describing the behavior of the
structure is obtained. Then, additional load is
applied to the updated structural configur-
ation, and the same process is repeated. This
iterative procedure continues until complete
structural collapse occurs due to either excess-
ive material failure or structural instability.,

2.1 Description of Solution Algorithm

In the conventional implicit method based
structural stability analysis, a matrix that ac-
counts for the change in potential energy as-
sociated with the element rotation, which is
usually referred to as the geometric stiffness
matrix,” is required and added to the govern-
ing matrix equation of the idealized structural
system. For nonlinear structural stability anal-
ysis, the geometric stiffness matrices are usual
ly a quadratic function of the displacement,
Hence, the formulation of geometric stiffness
matrix requires the solution of governing mat-
riX equation,

In this study, on the other hand, the geo-
metric internal force vector due to the change
in geometry is explicitly calculated, and added

to the internal force vector of the structure.
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During the course of loading, the magnitude of
the geometric internal force vector is small,
and its effect on the behavior of a structure
may be insignificant. However, when the ex-
ternal load approaches its critical value, the
geometric internal force vector becomes sig-
nificant, and structural instability occurs.

In this study, structural instability is pred-
icted using the load-deflection method of anal-
ysis. By examining the maximum structural re-
sponse obtained for the current and preceding
load steps, if a relatively small increase in load
causes large value of deflection, the structural
instability is assumed to occur. Then, the pre-
viously carried load value is considered as the
ultimate load carrying capacity of the struc-
ture. At the end of solution process within the
current load increment, the maximum displace-
ment in the structure is determined. If the dif-
ference between maximum displacements com-
puted at the current and preceding steps is
greater than the prescribed tolerance limit,
the structure is assumed to be failed by buck-
ling. Otherwise, the structural geometry and
degrees of freedom are updated for the next
time step, and the solution process is advanced
with the next time step.

2.2 Solution to Equation of Motion

A general form of the differential equation
of motion of an idealized structure can be semi
-discretized using the finite element method
with respect to space coordinates, and written

in matrix form as*?

(M HDIAH[CUDIH KD} = {Fo} (1)

where [M], [C], and [K] are the mass, damp-
ing, and stiffness matrices of the structure, re-
spectively. {D} is the nodal displacement vec-
tor, and {D} and {D} are the corresponding no-

dal velocity and acceleration vectors of the
structure, respectively, {FeJ is a time depen-
dent external force vector of the structure.

In order to reflect the time dependent nat-
ure of the problem, by denoting the currént
and previous time steps by t+at and t, re-
spectively, the semi-discretized matrix equa-
tions of motion in Eq. 1 can be rewritten as

(MDD} T8+ [KHDY = {(Fe ™ (2)

It is noted that an arbitrary damping effect is
excluded in the above expression. [M] is as-
sumed to be time independent.

In the direct time integration methods, the
space discretized matrix governing equation of
a structure is solved by using either the im-
plicit direct time integration method or the ex-
plicit direct time integration method. In the
implicit method, the information at the current
time step is obtained by iteratively adjusting
the governing equation until internal and ex-
ternal equilibrium conditions are satisfied for
that step., Whereas in the explicit method, the
information at the current time step is obtain-
ed by directly solving the equation of motion
at the previous time step. Hence, the solution
of explicit method is obtained in a rather ex-
plicit and direct manner,

For small finite element models, [k] can be
formed and the internal force vector at each
time step can be computed by {fi.}=[k1{d}, in
which [k] and {d} are the stiffness matrix and
nodal displacement vector of the element, re-
spectively. On the other hand, in explicit met-
hod the internal force vector can be computed
by summation of element contributions.

In explicit method of formulation, the el-
ement internal force vector can explicitly be

calculated by
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ol = [ JBJHaldv (3)

where [B] is the element strain-displacement
relation matrix, {o} the element stress vector,
and V the volume of the element. Hence, in
explicit method, the governing matrix equa-
tion of structural system in Eq. 2 can be rewrit-

ten as
[M D} = (R, 1 ot (4)

in which {F,} is the internal force vector of the
structure.

Knowing the structural external force vector
at the current time step, the structural nodal
acceleration vector can explicitly be computed
as

IDF P = [ M) (R T —(F, 1) (5)

To obtain the solution, it is necessary to inte-
grate Eq. 5 twice through the time space. The
most commonly used operator in the explicit
method is the central difference operator.? In
this study, the equations of motion are integ-
rated explicitly in time by the central differ-
ence method, in which the structural nodal vel

ocity and displacement are computed as?

Dy — {D}’+%At[{l'j}’+{ﬁ}‘“‘] (6)
and
(DA — {D}‘+At{D}‘+%At2{5}‘ (7)

In the above, the structural nodal degrees of
freedom are obtained without solving simul-
taneous equations, which is necessary in the
implicit method. Since the structural stiffness
matrix need not be formed or stored, the ex-

plicit method can treat large scale problems
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with comparatively modest computer storage
requirements,

In all cases of problems, the explicit method
requires numerical integration along the load-
ing path at high precision. Thus, many steps
of numerical integration are always required.
Major disadvantage of the explicit method
compared to the implicit method is that the
explicit method requires very small time step
for numerical stability requirements. Further-
more, {F;;} is needed to be recalculated at ever-
y time step even though the stiffness matrix is
not changed. Therefore, the explicit method is
suitable for only some special class of problems
such as transient analysis of nonlinear problem-

S,“

3. FORMULATION OF PLANE FRAME EL-
EMENT

3.1 Element Description

In order to verify the proposed solution al-
gorithm in predicting dynamic response of
structures, a plane frame element is developed
using the large deflection beam theory. The el-
ement consists of three degrees of freedom per
node(Fig. 1). The two translational degrees of
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Fig. 1 Element deformation and rigid body rotation in lo-
cal and global coordinates



freedom are denoted by u, v, and the rota-
tional degree of freedom denoted by 6.

On the basis of updated Largrangian formu-
lation, the element is formulated in the local
coordinates. The nodal displacement vectors
{d} and {D} in the local and global coordinates

are defined, respectively, as

{d} == [Ul 'S 01 Uy Vo 02:]T (8)
and
{D} - [Ul V] @1 Uz Vz @2] (9)

The conditions imposed in the local nodal dis-

placement vectors are

w=U-U =0 (10a)
u, = Uy,— U, (10b)
vi=V,—=V;=0 (10c)
vy = V,— V) (10d)
6= 0,—¢ (10e)
0, = ©,—¢ (10f)

where ¢ is the rigid body rotation of the el-
ement as illustrated in Fig, 1.

3.2 Displacement Functions

For the displacement components in Eq. 8,
the conventional displacement functions for
the frame element are assumed. Assuming the
axial displacement to be linear in the x direc-
tion, the axial displacement in terms of local
nodal displacement can be written as

X
= 11
u L. Up (11)

where L. is the length of the element. The
transverse displacement is assumed to be a cu-
bic function as

jnk
ot
101

XZ X.'i
v = 01X_ (201+92)"‘-+(91+02 ~7 (12)
L. L
For the assumed cubic transverse displace-
ment field in Eq. 12, the rotational displace-
ment is obtained as

2
0= G5 = 0= (0, +20) T3040 35

(13)

It should be noted that the transverse shear
deformation of the element is neglected in Eq.
13. The previous research” indicated that
shear deformation has little effect on the buc-
kling response of columns.

For the calculation of rigid body rotation of
the element, the following assumption is made.
Although rotation may be arbitrarily large, the
deformation itself is small. Hence, the rotation
relative to the x-axis must be small, so that
the angle of rotation of the x-axis 1s a good ap-
proximation to the rigid body rotation of the
entire element.? In this study, the rigid body
rotation within the element i1s approximated by
the following relationship.

LoXLy
LoLy

¢ =sin |

] (14)

where L, and L, are the vectors, which rep-
resent the original and deformed length of the
element, respectively. X represents vector

product.

3.3 Calculation of Element Internal Force
Vector

In the following, according to the principle
of virtual work, the element internal force vec-
tor is derived.

The strain-displacement expression employ-
ed in structural instability problem must in-
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clude the geometric nonlinear strain term, and
is given by’”
—du_ v 1 vy
&= FI% yaxg Z(ax) (15)
Using the kinematic relationships in Eq. 15
and a linear-elastic constitutive relationship,

the change in internal work of the element can
be written as

- _ s(lerp Qu o v
awm—ajo [jAaxudA bjyaxzyady
1 IV \2
+5 j (55 edAldx (16)

where A is the cross-sectional area and b the
width of the element,

Using the element internal force vector in
Eq. 3, and denoting the virtual nodal displace-

ment as {6d}, the variation of internal work

also can symbolically be written as?

Wi = {6d)T{fin} (17)

With the aid of Eq. 17, the change in inter-
nal work due to axial deformation in Eq. 16
can be rewritten as

SWL = {sd)7 jle [B]%a}A dx (18)

where [B,;] is the strain-displacement relation
matrix, which is corresponding to the axial de-
formation in Eq, 11. By comparing Eq. 17 with
Eq. 18, the internal force vector due to the
axial deformation is defined as

£y = j ;e [B,]"(c} Adx

Similarly, the change in internal work due to
bending in Eq. 16 can be rewritten as

SWE = {6d)T j je j , by[B,]™{s}dydx (20)

where [B;] is corresponding to the transverse
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J

displacement in Eq. 12.

In the same manner, by comparing Eq. 17
with Eq. 20, the internal force vector due to
the bending is defined as

ey = jLe [y by[B, ] e}dydx (21)

The change in internal work due to the chan
ge in geometry is integrated numerically at
points x==0 and x=L. within the element. The

result is shown in the following.

Wi = 66/Pinb)Le+60,P 051, (22)

where Py, is the internal axial force, which is
numerically integrated over the cross-sectional
area of the element, With the aid of Eq. 17,
the internal force vector due to the change in
geometry, which is referred to as the geo-
metric internal force vector, {f3), can be de-
fined. In the present study, the geometric
internal force vector is computed and added to
the element formulation, which aims to take
into account the structural instability effect.
The internal force vector of the element,

{fn}, is the sum of the three internal force vec
tors, {fl}, {4}, and {3},

3.4 Calculation of Element Mass Vector
In this study, the lumped element mass vec-
tors are explicitly calculated using the lumped
mass approach?, and result is shown in the fol-
lowing,
1 L2 L2

{m} = 2pAL.11 T 11 U3

T
> 1 (23)

where is the mass density of the material.

4. ILLUSTRATIVE NUMERICAL EXAMPLES

In order to validate the present formulation



and solution algorithm, selected example prob-
lems are solved by the computer program de-

! and the solutions are

veloped in this study,’
compared with the analytical solutions. A typi-
cal example of buckling of structures may be
an initially straight column with pin-ended sup-
port under axial load, which known as Euler
column(Fig. 2). The time step used in the cal-
culation is t=4x107® sec, which satisfies the
numerical stability requirement for the central
difference method. The finite element model
used in the analysis is composed of 10 frame
elements, The integration points used in the
analysis are two and five for the element len-
gth and depth directions, respectively. For the
simplification, damping effect is neglected
throughout the numerical analysis,

Fig. 2 Configuration, loading, and support conditions of
column

4.1 Euler Column under Static Loading

In the first example, the buckling behavior
of Euler column under static loading is inves-
tigated. The analytical elastic static buckling
load of the column using the Euler equation® is
14.9kips(66.38kN). The constant value of load,
P=15 kips(66.72kN), is applied. The lateral
deflection at the mid height of the column ver-
sus time curve (histogram) is plotted in Fig. 3.
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Fig. 3 Lateral displacement versus time curve for Euler
column under static loading

The figure shows that the lateral deflection of
column increases dramatically after 0.2sec.
This behavior is assumed to indicate buckling
of the column. However, the load value which
causes buckling of the column cannot be deter-
mined using the histogram.

To approximate the static buckling load of
the column, the load is applied using the pres-
cribed loading rate. The column is loaded by
using a linear load-time function, at which an
arbitrarily determined loading rate is 6.67 x 10
b /sec(296.68kN /sec). For an infinitesimal
scale of the deflection, the load-deflection cur-
ve of the column is plotted in Fig. 4. It can be
seen that prior to the load reaches the static
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Fig. 4 Load-deflection curve for a perfect column under
pseudo-static loading
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buckling load level, the lateral deflection of
the column oscillates, The amplitude of lateral
oscillation is less than 2.0x10 ® inch. The pre-
vious research has indicated that a perfect col-
umn is known to develop lateral oscillation if
its stable equilibrium is disturbed.” Once the
load reaches its critical value, the amplitude of
vibration begins to grow without limit. The
load level P=16kips can be considered as the
ultimate loading capacity of the column.

4.2 Free Vibration of Euler Column

For a very short duration of impact load,
free vibration of a column caused by an impact
load is studied to determine the natural fre-
quency of Euler column, The ramp shaped im-
pact load, which is shown in Fig. 6(a), having
a very short duration of 1.0x 107 sec is applied
laterally at the mid height of the column and
removed shortly. The maximum magnitudes of
load, 0.05kips(222.4N) and 0.1kips(444.8N) at
half the load are considered. Upon removal of
the impact load, the response is due to free vi-
bration. The natural frequency of this column,
@, —356.48 rad /sec, is obtained using the stiff-
ness matrix method with the consistent mass
matrix.

0.015
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—001—

Lateral Deflection (in.)

-0.015 —
0 6.03 .04 005 0.C6 0.07 0.08 0.09
Time {Sec.)

0.01 0.02

Fig. 5 Free vibration response of a column under impact
loading
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In Fig. 5, the lateral deflection at the mid
height of the column is plotted against time. It
can be seen that the frequencies of column res
ponses are almost identical with the natural
frequency of the column, regardless of the
magnitudes of impact loads.

4.3 Euler Column under Impact Loading

Among the problems of the dynamic insta-
bility of structures, probably the best known
problem is that under impact loading. As show
n in Fig. 6, the ramp, triangular, and one half
sine shaped of impulsive loadings, which have
various load durations and magnitudes, are con-
sidered. In this study, the dynamic buckling
response of structures subjected to impulsive
loadings is investigated by considering the fol-
lowing loading parameters: (1) the shape: (2)
magnitude:; and (3) duration of impact loads.

o
el

(a) {bi

Fig. 6 Impulsive loads: (a) ramp phase; (b) triangular
phase; and (c) half sine wave phase

4.3.1 Influence of load shape on column re-
sponse

The sine(one half sine wave) and triangular
shaped impact loads are considered. For both
load shapes, the load duration is assumed to be
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the same as that of the first free vibration.
The first duration of free vibration, which is
denoted as Ty, is 1.762x10 * sec. The maximum
magnitude of load 15kips{66.72kN) at half the
load is assumed.

In Fig. 7, the lateral deflection at the mud
height of the column is plotted against time,
The figure shows that the frequencies of re-
sponse due to both load shapes are almost the
same. However, the maximum amplitude due
to the sine shaped impact load is approximate-
ly 1.8 times larger than that of the triangular
shaped load. This is because the energy prod-
uced by external load of the sine shaped load
is greater than that of the triangular shaped
load. On the basis of the maximum response,
the sine shape is obviously severe loading

case.
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Fig. 7 Influence of load shapes on column response{con-
stant load duration and magnitude)

4.3.2 Influence of load magnitude on col-
umn response

Since the sine shaped impact load is known
as a severe loading case in the previous exam-
ple, this load shape is considered. The duration
of applied load, Ty, is the same as that of first
free lateral vibration of the column,

In Fig. 8, for the maximum load magnitude

s{66.72kN), the lateral deflection at the mid

height of the column is plotted against time.
The figure shows that the influence of the
magnitudes of impact load on column response

1s apparent,
@
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Fig. 8 Influence of load magnitudes on column response
(sine shaped load and constant load duration)

As it is expected, the maximum response
nicreases as the load magnitude increases.
However, the response is not linearly pro-
portional to the magnitude of the load. This
may be due to the fact that, at a certain load
magnitude, the buckling of the column influen-

ces the maximum response,

4.3.3 Influence of load duration on column
response

The impact load is the sine shaped, for whic-
h the maximum magnitude of load i1s 15kips
(66.72kN) at half the load. In the analysis, the
magnitude of the load is unchanged, but load
durations are changed to obtain the response
curves for various load durations. Each load
duration is normalized to the first period of
free vibration of unloaded column, and denoted

as Ty /T. in the figure.

of 5kips(22.24kN), 10 kips(44.48kN) and 15kip Fig. 9 shows the column response curves for
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Fig. 9 Influence of load durations on column response

(sine shaped load and constant load magnitude)

-Defiection versus time curves for T4/T,=0.5, 1.0,

0 and 3.0
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2.02 .04 C.CE
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Fig. 10 Influence of load durations on column response
(sine shaped load and constant load magnitude)
-Deflection versus time curves for T4/T,=4.0, 5.0,
6.0 and 7.0

which Tq/T,=0.5, 1.0, 2.0, and 3.0. Fig. 10
shows the column response curves for which

Ts/To=4.0, 5.0, 6.0, and 7.0. Both figures show
that the influence of load durations on column
response 1s apparent. For relatively short load
durations(Ty /Ty<3.0), the dynamic effect is
less than the static effect. This is because the
column needs not be damaged by the impact
load if the load is removed after a sufficiently
short time. However, as the load duration
increases, the dynamic effect is pronounced,
For the impact load with T4 /T,=7.0, the max-
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imum response of the column is 3.5 times lar-
ger than that of static load. It is recognized
that the dynamic instability is greatly influen-
ced by the load duration. The value of Ty /T,
=4.0 is assumed to the critical value of the dy-
namic instability for the given column.

5. CONCLUSIONS

Dynamic buckling response of columns is
quite different from the corresponding static
response. However, depending upon the inter-
acting factors of dynamic analysis, dynamic ef-
fect may be less than that of the static. Based
on the current findings, the relationships be-
tween the dynamic loading parameters, which
influence the dynamic buckling response of col
umns, are summarized in the followings,

(1) The results of example problems indicate
that the influence of the time variation of im-
pulsive loading on column response is obvious,
For the shapes of impulsive loading considered
herein, the shape of one half sine wave load is
identified as a severe loading case. In general,
the maximum response due to the sine wave
phase load is about two times larger than that
of triangular phase of load.

(2) In addition to the time variations, the
numerical results of the present study indicate
that the amplitude of dynamic response of col-
umn is not proportional to the magnitude of
impulsive loading. The maximum dynamic res-
ponses are abruptly increased as the load mag-
nitudes are increased.

(3) For a short duration of impact load, the
dynamic effect is less than the static effect.
However, as the load duration increases, the
dynamic effect becomes pronounced. For a cer
tain case, dynamic effect on the maximum re-
sponse is found to be as much as 3.5 times lar-



ger than that of static. It is therefore conclud-
ed that, where appropriate, the dynamic nat-
ure of loads must be considered in the struc-
tural problems to provide adequate safety
against dynamic structural instability.

(4) Besides column examples, the dynamic
buckling behavior of structural plane frames
under impact loading is studied but not pres-
ented in this paper. The influence of dynamic
loading parameters on frame response is simi-
lar to that of the column,
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