• Title/Summary/Keyword: Computational Fluid Dynamics

Search Result 2,872, Processing Time 0.049 seconds

CFD Analysis Based Optimal Temperature Measurement (CFD 해석 기반 실내 최적 온도 계측)

  • Lee, Min-Goo;Park, Yong-Kuk;Jung, Kyung-Kwon;Yoo, Jun-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.735-738
    • /
    • 2011
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We installed 30 temperature sensors in real place. After that, we compared the real one with the result of simulation.

  • PDF

A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD)

  • Dhunny, Asma Z.;Lollchund, Michel R.;Rughooputh, Soonil D.D.V.
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.565-578
    • /
    • 2015
  • A wind energy assessment is an integrated analysis of the potential of wind energy resources of a particular area. In this work, the wind energy potentials for Mauritius have been assessed using a Computational Fluid Dynamics (CFD) model. The approach employed in this work aims to enhance the assessment of wind energy potentials for the siting of large-scale wind farms in the island. Validation of the model is done by comparing simulated wind speed data to experimental ones measured at specific locations over the island. The local wind velocity resulting from the CFD simulations are used to compute the weighted-sum power density including annual directional inflow variations determined by wind roses. The model is used to generate contour maps of velocity and power, for Mauritius at a resolution of 500 m.

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Computational Fluid Dynamics of Hydraulic Valve Meter (밸브 수압측정기의 유동해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1963-1968
    • /
    • 2012
  • In this research paper a hydraulic valve meter for the measurement of water pressure in fields was designed by using three dimensional automatic design program CATIA. And, also computational fluid dynamics was applied to the designed hydraulic valve meter in order to obtain flow distributions due to internal pressures. This analytical results will be provided as fundamental data in the development of new concepts of hydraulic valve meter and the hydraulic valve meter in development may reduce valve checking times and improve safety by preventing accidents earlier.

Performance Evaluation of a Main Coolant Pump for the Modular Nuclear Reactor by Computational Fluid Dynamics (전산해석에 의한 일체형 원자로용 주냉각재 펌프의 성능분석)

  • Yoon Eui-Soo;Oh Hyoung-Woo;Park Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.818-824
    • /
    • 2006
  • The hydrodynamic performance analysis of an axial-flow main coolant pump for the modular nuclear reactor has been carried out using a commercial computational fluid dynamics (CFD) software. The prediction capability of the CFD software adopted in the present study was validated in comparison with the experimental data. Predicted performance curves agree satisfactorily well with the experimental results for the main coolant pump over the normal operating range. π Ie prediction method presented herein can be used effectively as a tool for the hydrodynamic design optimization and assist the understanding of the operational characteristics of general purpose axial-flow pumps.

Prediction of Aerodynamic Coefficients of Bridges Using Computational Fluid Dynamics (전산유체역학 해석에 의한 교량 단면의 공력 특성값 추정)

  • Hong, Young-Kil
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Aerodynamic characteristics of cross section shape is an important parameter for the wind response and structural stability of long span bridges. Numerical simulation methods have been introduced to estimate the aerodynamic characteristics for more detailed flow analysis and cost saving in place of existing wind tunnel experiment. In this study, the computational fluid dynamics(CFD) simulation and large eddy simulation( LES) technique were used to estimate lift, drag and moment coefficients of four cross sections. The Strouhal numbers were also determined by the fast Fourier transform of time series of the lift coefficient. The values from simulations and references were in a good agreement with average difference of 16.7% in coefficients and 8.5% in the Strouhal numbers. The success of the simulations is expected to attribute to the practical use of numerical estimation in construction engineering and wind load analysis.

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

Evalution of Hemolysis in Axial Flow Blood Pump with Computational Fluid Dynamics Analysis (전산유체해석을 이용한 축류형 혈액펌프의 용혈평가)

  • 임상필;김동욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.256-259
    • /
    • 2003
  • Artificial heart is divided pulsation style and nonpulsation style greatly according to flowing of blood. nonpulsation pump is advantage of miniaturization avaliable because it is simple and non-volumic-pump than pulsation pump. Non pulsation pump is derided axial flow style and centrifugal style accordig to rotating style. An axial flow blood pump can be made smaller than a centrifugal blood pump because of its higher specific speed. A hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis nun. Evaluation of hemolysis both in in vitro and in vivo require a long time and are costly. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer. The aims of this study is Computational fluid dynamics in the whole axial flow pump and to verify the accuracy of prediction results of CFD analysis compare with in vitro experimental results.

  • PDF

A Study on Hovering Performance of Personal Air Vehicle According to Distance between Rotor Blade Axis via Computational Fluid Dynamics (전산유체역학을 통한 PAV의 로터 블레이드 축간거리에 따른 호버링 성능 변화 연구)

  • Yoon, Jaehyun;Noh, Wooseung;Doh, Jaehyeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.53-60
    • /
    • 2022
  • In this study, the conceptual design and performance evaluation of a personal air vehicle (PAV) is presented, which is a potential futuristic individual transportation. The blade element theory (BET) is employed to compute a rotational velocity. A computational fluid dynamics (CFD) simulation is performed to investigate the difference in the thrust performance in the rotor axis distance of a quad-copter PAV in hovering. Modal analysis is performed to create a Campbell diagram to investigate critical speed. Consequently, a quad-copter PAV changes the aerodynamics thrust and critical velocity according to the rotor axis distance.