• Title/Summary/Keyword: Computation process

Search Result 1,091, Processing Time 0.033 seconds

An Analysis of Recruitment Importance and Priority of According to the introduction of NCS(National Competency Standards) in Sports Public Institution (NCS(국가직무능력표준) 도입에 따른 스포츠계열 공공기관의 채용 중요도 및 우선순위 분석)

  • Kim, Dong-Man
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1409-1417
    • /
    • 2020
  • The purpose is to increase the likelihood of physical education students for employment in public institutions by examining the priority for hiring sports-related public institutions. The subject of the study was purposeful sampling of a total of 11 persons including 4 sports professors, 3 NCS experts in sports field, 2 judges from public sports institutions, and 2 personnel in charge of hiring public institutions. Through this process, from January 3 to March 12, 2020, the importance of priority was analyzed using hierarchical structure analysis using the main factors of NCS vocational basic competency. All data are coded so that statistical processing can be performed. Using SPSS/PC (ver. 21.0) for Windows, the hierarchical structure analysis was used for frequency analysis and priority determination. First, communication skills (.231), organizational comprehension skills (.177), resource management skills (.128), interpersonal skills (.110), vocational ethics (.082), problems in the major areas of recruitment of sports-related public institutions Solving ability (.061), information ability (.056), mathematical ability (.054), self-development ability (.052), and description ability (.049) were analyzed in order. Second, in terms of evaluation items, communication is communication skills (.442), mathematical skills are basic computation skills (.512), problem solving skills are thinking skills (.722), self-development skills are self-management skills (.587), Resource management ability was analyzed in order of time management ability (.531), interpersonal relationship ability as teamwork ability (.382), information ability in computer use ability (.677), technical ability in technology understanding ability (.599).

2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos (단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법)

  • Ko, Jae-Seung;Kim, Young-Woo;Jung, Young-Ju;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2008
  • This paper proposes a novel method to convert monoscopic soccer videos to stereoscopic videos. Through the soccer video analysis process, we detect shot boundaries and classify soccer frames into long shot or non-long shot. In the long shot case, the depth mapis generated relying on the size of the extracted ground region. For the non-long shot case, the shot is further partitioned into three types by considering the number of ground blocks and skin blocks which is obtained by a simple skin-color detection method. Then three different depth assignment methods are applied to each non-long shot types: 1) Depth estimation by object region extraction, 2) Foreground estimation by using the skin block and depth value computation by Gaussian function, and 3)the depth map generation for shots not containing the skin blocks. This depth assignment is followed by stereoscopic image generation. Subjective evaluation comparing generated depth maps and corresponding stereoscopic images indicate that the proposed algorithm can yield the sense of depth from a single view images.

Object Detection Method on Vision Robot using Sensor Fusion (센서 융합을 이용한 이동 로봇의 물체 검출 방법)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.249-254
    • /
    • 2007
  • A mobile robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. We focus on how to detect a object region well using image processing algorithm because it gives robots the ability of working for human. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. Shape information and signature algorithm are used to segment the objects from background regardless of shape changes. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.

Fast Multi-View Synthesis Using Duplex Foward Mapping and Parallel Processing (순차적 이중 전방 사상의 병렬 처리를 통한 다중 시점 고속 영상 합성)

  • Choi, Ji-Youn;Ryu, Sae-Woon;Shin, Hong-Chang;Park, Jong-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1303-1310
    • /
    • 2009
  • Glassless 3D display requires multiple images taken from different viewpoints to show a scene. The simplest way to get multi-view image is using multiple camera that as number of views are requires. To do that, synchronize between cameras or compute and transmit lots of data comes critical problem. Thus, generating such a large number of viewpoint images effectively is emerging as a key technique in 3D video technology. Image-based view synthesis is an algorithm for generating various virtual viewpoint images using a limited number of views and depth maps. In this paper, because the virtual view image can be express as a transformed image from real view with some depth condition, we propose an algorithm to compute multi-view synthesis from two reference view images and their own depth-map by stepwise duplex forward mapping. And also, because the geometrical relationship between real view and virtual view is repetitively, we apply our algorithm into OpenGL Shading Language which is a programmable Graphic Process Unit that allow parallel processing to improve computation time. We demonstrate the effectiveness of our algorithm for fast view synthesis through a variety of experiments with real data.

A Seamline Extraction Technique Considering the Characteristic of NDVI for High Resolution Satellite Image Mosaics (고해상도 위성영상 모자이크를 위한 NDVI 특성을 이용한 접합선 추출 기법)

  • Kim, Jiyoung;Chae, Taebyeong;Byun, Younggi
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.395-408
    • /
    • 2015
  • High-resolution satellite image mosaics are becoming increasingly important in the field of remote sensing image analysis as an essential image processing to create a large image constructed from several smaller images. In this paper, we present an automatic seamline extraction technique and the procedure to generate a mosaic image by this technique. For more effective seamline extraction in the overlap region of adjacent images, an NDVI-based seamline extraction technique is developed, which takes advantage of the computational time and memory. The Normalized Difference Vegetation Index(NDVI) is an index of plant "greeness" or photosynthetic activity that is employed to extract the initial seamline. The NDVI can divide into manmade region and natural region. The cost image is obtained by the canny edge detector and the buffering technique is used to extract the ranging cost image. The seamline is extracted by applying the Dijkstra algorithm to a cost image generated through the labeling process of the extracted edge information. Histogram matching is also conducted to alleviate radiometric distortion between adjacent images acquired at different time. In the experimental results using the KOMPSAT-2/3 satellite imagery, it is confirmed that the proposed method greatly reduces the visual discontinuity caused by geometric difference of adjacent images and the computation time.

The Effect of the Belief Systems on the Problem Solving Performance of the Middle School Students (중학생의 신념체계가 수학적 문제해결 수행에 미치는 영향)

  • Kwon Se Hwa;Jeon Pyung Kook
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.109-119
    • /
    • 1992
  • The primary purpose of the present study is to provide the sources to improve the mathematical problem solving performance by analyzing the effects of the belief systems and the misconceptions of the middle school students in solving the problems. To attain the purpose of this study, the reserch is designed to find out the belief systems of the middle school students in solving the mathematical problems, to analyze the effects of the belief systems and the attitude on the process of the problem solving, and to identify the misconceptions which are observed in the problem solving. The sample of 295 students (boys 145, girls 150) was drawn out of 9th grade students from three middle schools selected in the Kangdong district of Seoul. Three kinds of tests were administered in the present study: the tests to investigate (1) the belief systems, (2) the mathematical problem solving performance, and (3) the attitude in solving mathematical problems. The frequencies of each of the test items on belief systems and attitude, and the scores on the problem solving performance test were collected for statistical analyses. The protocals written by all subjects on the paper sheets to investigate the misconceptions were analyzed. The statistical analysis has been tabulated on the scale of 100. On the analysis of written protocals, misconception patterns has been identified. The conclusions drawn from the results obtained in the present study are as follows; First, the belief systems in solving problems is splited almost equally, 52.95% students with the belief vs 47.05% students with lack of the belief in their efforts to tackle the problems. Almost half of them lose their belief in solving the problems as soon as they given. Therefore, it is suggested that they should be motivated with the mathematical problems derived from the daily life which drew their interests, and the individual difference should be taken into account in teaching mathematical problem solving. Second. the students who readily approach the problems are full of confidence. About 56% students of all subjects told that they enjoyed them and studied hard, while about 26% students answered that they studied bard because of the importance of the mathematics. In total, 81.5% students built their confidence by studying hard. Meanwhile, the students who are poor in mathematics are lack of belief. Among are the students accounting for 59.4% who didn't remember how to solve the problems and 21.4% lost their interest in mathematics because of lack of belief. Consequently, the internal factor accounts for 80.8%. Thus, this suggests both of the cognitive and the affective objectives should be emphasized to help them build the belief on mathematical problem solving. Third, the effects of the belief systems in problem solving ability show that the students with high belief demonstrate higher ability despite the lack of the memory of the problem solving than the students who depend upon their memory. This suggests that we develop the mathematical problems which require the diverse problem solving strategies rather than depend upon the simple memory. Fourth, the analysis of the misconceptions shows that the students tend to depend upon the formula or technical computation rather than to approach the problems with efforts to fully understand them This tendency was generally observed in the processes of the problem solving. In conclusion, the students should be taught to clearly understand the mathematical concepts and the problems requiring the diverse strategies should be developed to improve the mathematical abilities.

  • PDF

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

A Study on the Architecture Modeling of Information System using Simulation (시뮬레이션을 이용한 정보시스템 아키텍쳐 모델링에 관한 연구)

  • Park, Sang-Kook;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.455-458
    • /
    • 2013
  • The conventional design of the information system architecture based on the personal experience of information systems has been acted as a limit in progress utilizing appropriate resource allocation and performance improvements. Architecture design depending on personal experience makes differences in variance of a designer's experience, intellectual level in related tasks and surroundings, and architecture quality according to individual's propensity. After all these problems cause a waste of expensive hardware resources. At working place, post-monitoring tools are diversely developed and are running to find the bottleneck and the process problems in the information operation. However, there are no simulation tools or models that are used for expecting and counteracting the problems at early period of designing architecture. To solve these problems we will first develop a simulation model for designing information system architecture in a pilot form, and will verify validity. If an error rate is found in the permissible range, then it can be said that the simulation reflects the characteristic of information system architecture. After the model is developed in a level that can be used in various ways, more accurate performance computation will be able to do, getting out of the old way relying on calculations, and prevent the existence of idle resources and expense waste that comes from the wrong design of architecture.

  • PDF

Comparison between FFT and LSC Method for the Residual Geoid Height Modeling in Korea (한국의 잔여지오이드고 모델링을 위한 FFT 및 LSC 방법 비교)

  • Lee, Dong Ha;Yun, Hong Sic;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.323-334
    • /
    • 2011
  • In this study, we performed the residual geoid modeling using the FFT and LSC methods in context of application of R-R (Remove and Restore) technique as a general technique for gravimetric geoid model in order to propose the effective way of geoid determination in Korea. For this, a number of data compiled for residual geoid modeling by the multi-band spherical FFT method with Stoke's formula and LSC method as known as statistical method. The geometric geoidal heights obtained from 503 GPS/Levelling data were used for inducing the various elements and proper computation process which should be considered for improving the accuracy of residual geoid modeling. Finally, we statistically compared the results of residual geoid heights between FFT and LSC methods and reviewed then the proper way of residual geoid modeling to the region of Korea. As the results of comparison, LSC method is not suitable for residual geoid modeling in Korea due to the noise and lack of gravity observations and the effects of local characteristics, while FFT method by applying Stokes' integral with proper cap size and modified kernel which provides the better accuracy of residual geoid heights up to 10 cm more than those of LSC method.