• Title/Summary/Keyword: Computation problem

Search Result 1,291, Processing Time 0.027 seconds

A Case Study of a Navigator Optimization Process

  • Cho, Doosan
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.26-31
    • /
    • 2017
  • When mobile navigator device accesses data randomly, the cache memory performance is rapidly deteriorated due to low memory access locality. For instance, GPS (General Positioning System) of navigator program for automobiles or drones, that are currently in common use, uses data from 32 satellites and computes current position of a receiver. This computation of positioning is the major part of GPS which accounts more than 50% computation in the program. In this computation task, the satellite signals are received in real time and stored in buffer memories. At this task, since necessary data cannot be sequentially stored, the data is read and used at random. This data accessing patterns are generated randomly, thus, memory system performance is worse by low data locality. As a result, it is difficult to process data in real time due to low data localization. Improving the low memory access locality inherited on the algorithms of conventional communication applications requires a certain optimization technique to solve this problem. In this study, we try to do optimizations with data and memory to improve the locality problem. In experiment, we show that our case study can improve processing speed of core computation and improve our overall system performance by 14%.

A Practical Privacy-Preserving Multi-Party Computation Protocol for Solving Linear Systems (선형계를 위한 실용적인 프라이버시 보존형 다자간 계산 프로토콜)

  • Yi Ok-Yeon;Hong Do-Won;Kang Ju-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.13-24
    • /
    • 2006
  • We consider a privacy-preserving cooperative computation protocol evaluating a beneficial function of all participants' secret inputs, such that each party finally holds a share of the function output. We propose a practical privacy-preserving cooperative computation protocol for solving the linear system of equations problem md the linear least-squares problem. Solutions to these problems are widely used in many areas such as banking, manufacturing, and telecommunications. Our multi-party protocol is an efficiently extended version of the previous two-party model.

Semi-trusted Collaborative Framework for Multi-party Computation

  • Wong, Kok-Seng;Kim, Myung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.411-427
    • /
    • 2010
  • Data sharing is an essential process for collaborative works particularly in the banking, finance and healthcare industries. These industries require many collaborative works with their internal and external parties such as branches, clients, and service providers. When data are shared among collaborators, security and privacy concerns becoming crucial issues and cannot be avoided. Privacy is an important issue that is frequently discussed during the development of collaborative systems. It is closely related with the security issues because each of them can affect the other. The tradeoff between privacy and security is an interesting topic that we are going to address in this paper. In view of the practical problems in the existing approaches, we propose a collaborative framework which can be used to facilitate concurrent operations, single point failure problem, and overcome constraints for two-party computation. Two secure computation protocols will be discussed to demonstrate our collaborative framework.

Mixing algorithm for attitude computation of underwater vehicle using fuzzy theory (퍼지 이론을 이용한 수중 운동체의 자세계산 혼합 알고리즘)

  • 김영한;이장규;한형석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.265-272
    • /
    • 1996
  • In this paper, attitude computation algorithm for a strap down ARS(Attitude Reference System)of an underwater vehicle has been studied. Attitude errors o the ARS using low-level gyroscopes tend to increase with time due to gyroscope errors. To cope with this problem, a mixing algorithm of accelerometer aided attitude computation has been developed. The algorithm can successfully bound the error increase for cruising motion, but it gives instantaneously large errors when a vehicle maneuvers. To improve the performance in case of vehicle's maneuver, a new attitude computation mixing algorithm complying state of vehicle and to manage the adjustment of the gains which are invariant in the existing algorithm. In addition, a gain scheduling method is applied to fuzzy inference composition process for real-time computation. Monte Carlo simulation results show that the proposed algorithm provides better performance than the existing algorithm.

  • PDF

A Study on the Convergency Property of the Auxiliary Problem Principle

  • Kim, Balho-H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.455-460
    • /
    • 2006
  • This paper presents the convergency property of the Auxiliary Problem Principle when it is applied to large-scale Optimal Power Flow problems with Distributed or Parallel computation features. The key features and factors affecting the convergence ratio and solution stability of APP are also analyzed.

Modelling Civic Problem-Solving in Smart City Using Knowledge-Based Crowdsourcing

  • Syed M. Ali Kamal;Nadeem Kafi;Fahad Samad;Hassan Jamil Syed;Muhammad Nauman Durrani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.146-158
    • /
    • 2023
  • Smart City is gaining attention with the advancement of Information and Communication Technology (ICT). ICT provides the basis for smart city foundation; enables us to interconnect all the actors of a smart city by supporting the provision of seamless ubiquitous services and Internet of Things. On the other hand, Crowdsourcing has the ability to enable citizens to participate in social and economic development of the city and share their contribution and knowledge while increasing their socio-economic welfare. This paper proposed a hybrid model which is a compound of human computation, machine computation and citizen crowds. This proposed hybrid model uses knowledge-based crowdsourcing that captures collaborative and collective intelligence from the citizen crowds to form democratic knowledge space, which provision solutions in areas of civic innovations. This paper also proposed knowledge-based crowdsourcing framework which manages knowledge activities in the form of human computation tasks and eliminates the complexity of human computation task creation, execution, refinement, quality control and manage knowledge space. The knowledge activities in the form of human computation tasks provide support to existing crowdsourcing system to align their task execution order optimally.

An Application of advanced Dijkstra algorithm and Fuzzy rule to search a restoration topology in Distribution Systems (배전계통 사고복구 구성탐색을 위한 개선된 다익스트라 알고리즘과 퍼지규칙의 적용)

  • Kim, Hoon;Jeon, Young-Jae;Kim, Jae-Chul;Choi, Do-Hyuk;Chung, Yong-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.537-540
    • /
    • 2000
  • The Distribution System consist of many tie-line switches and sectionalizing switches, operated a radial type. When an outage occurs in Distribution System, outage areas are isolated by system switches, has to restored as soon as possible. At this time, system operator have to get a information about network topology for service restoration of outage areas. Therefore, the searching result of restorative topology has to fast computation time and reliable result topology for to restore a electric service to outage areas, equal to optimal switching operation problem. So, the problem can be defined as combinatorial optimization problem. The service restoration problem is so important problem which have outage area minimization, outage loss minimization. Many researcher is applying to the service restoration problem with various techniques. In this paper, advanced Dijkstra algorithm is applied to searching a restoration topology, is so efficient to searching a shortest path in graph type network. Additionally, fuzzy rules and operator are applied to overcome a fuzziness of correlation with input data. The present technique has superior results which are fast computation time and searching results than previous researches, demonstrated by example distribution model system which has 3 feeders, 26 buses. For a application capability to real distribution system, additionally demonstrated by real distribution system of KEPCO(Korea Electric Power Corporation) which has 8 feeders and 140 buses.

  • PDF

Operations Scheduling for Multi-item, Small-sized Production (다종소량생산(多種少量生産)의 일정계획(日程計劃))

  • Jo, Gyu-Gap;O, Su-Cheol;Yang, Tae-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.57-73
    • /
    • 1985
  • Group scheduling problem in a multi-stage manufacturing system is reviewed and two heuristic procedures for minimizing the makespan are developed by employing the methods of flow shop sequencing heuristics with a slight modification. The comparisons among the five heuristics, three previously reported heuristics and two heuristics suggested by this study, are made on different problem sizes. The computational results indicate that NEH-GS method gives better group schedules than the other heuristics tested, but its computation time increases rapidly as the problem size increases. On the other hand, CDS-GS method provides relatively good group schedules with less computation time compared with NEH-GS method.

  • PDF

Adaptive Evolutionary Computation to Economic Load Dispatch Problem with Piecewise Quadratic Cost Funcion (구분적인 이차 비용함수를 가진 경제급전 문제에 적응진화연산 적용)

  • Mun, K.J.;Hwang, G.H.;Kim, H.S.;Park, J.H.;Jung, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.844-846
    • /
    • 1998
  • In this study, an adaptive evolutionary computation(AEC), which uses adaptively a genetic algorithm having global searching capability and an evolution strategy having local searching capability with different methodologies, is suggested. This paper develops AEC for solving ELD problem with piecewise quadratic cost function. Numerical results show that the proposed AEC can provide accurate dispatch solutions within reasonable time for the ELD problem with piecewise quadratic cost function.

  • PDF

A Study on Efficient Watershed Algorithm by Using Improved SUSAN Algorithm

  • Choi, Yong-Hwan;Kim, Yong-Ho;Kim, Joong-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.431-434
    • /
    • 2003
  • In this paper, we propose an efficient method not only f3r producing accurate region segmentation, solving the over-segmentation problem of watershed algorithm but also f3r reducing post-processing time by reducing computation loads. Through this proposed method, region segmentation of neighboring objects and discrimination of similar intensities were effectively obtained. Input image of watershed algorithm has used the derivative-based detectors such as Sobel and Canny. But proposed method uses the pixels-similarity-based detector, that is, SUSAN. By adopting this proposed method, we can reduce the noise problem and solve the problem of over-segmentation and not lose the edge information of objects. We also propose Zero-Crossing SUSAN. With Zero-Crossing SUSAN, the edge localization, times and computation loads can be improved over those obtained from existing SUSAN

  • PDF