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Abstract 
 

Data sharing is an essential process for collaborative works particularly in the banking, finance 
and healthcare industries. These industries require many collaborative works with their 
internal and external parties such as branches, clients, and service providers. When data are 
shared among collaborators, security and privacy concerns becoming crucial issues and cannot 
be avoided. Privacy is an important issue that is frequently discussed during the development 
of collaborative systems. It is closely related with the security issues because each of them can 
affect the other. The tradeoff between privacy and security is an interesting topic that we are 
going to address in this paper. In view of the practical problems in the existing approaches, we 
propose a collaborative framework which can be used to facilitate concurrent operations, 
single point failure problem, and overcome constraints for two-party computation. Two secure 
computation protocols will be discussed to demonstrate our collaborative framework. 
 
 
Keywords: Data sharing, privacy preserving, secure computation protocol, collaborative 
computation  
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1. Introduction 

Collaborative computing is now the trend in most industries particularly in banking, finance, 
insurance, and healthcare. Most of the collaborative tasks are performed with internal or 
external parties. When two or more collaborators within a collaborative framework want to 
jointly perform a collaborative task, they need to share their private data with their 
counterparts. Privacy is frequently discussed during the development of collaborative systems 
under distributed environment. The balance between privacy protection and data sharing 
among collaborators is now becoming crucial. A secure system cannot guarantee that the 
privacy of the shared data is being preserved. However, a privacy preserved system normally 
can ensure that it has a series of secure mechanisms for privacy protection.  

For distributed environments, much work has been focused on designing specific 
information sharing protocols [1]. However, the privacy of the shared data is becoming a 
challenging issue. In the data sharing operation, privacy is referred as the process to prevent 
data  dissemination instead of the integration of privacy constraints [2].  

There are two important considerations before any collaborative task can be performed. If 
privacy is not a major concern, each collaborator can send their private data to a Trusted Third 
Party (TTP). The TTP functions as the central repository or data warehouse to perform the 
collaborative tasks. This is an ideal approach to support most collaborative tasks if the data 
being shared is not sensitive information (e.g., sharing of project member’s name, email 
address, contact numbers, and etc). If privacy is a concern, none of the collaborators should 
reveal their private data to any party including the TTP (e.g., sales analysis, product costs, 
stocks and etc).   

It is clear that collaborative tasks are easy and straightforward if the privacy protection for 
those shared data is not taken into consideration. However, in most real life cases, the privacy 
concern cannot be ignored. The disclosure of private data could seriously and negatively 
impact the data owner. When datasets are distributed on different sites, there is a need to find a 
balance between security and privacy protection.  

Database operations such as union or intersection computation, equijoin, and aggregation 
are important operations that can be used to support the secure data sharing process. For 
example, intersection computation is used to find the common value for different distributed 
datasets while revealing only the intersection [3]. However, the computation of these database 
operations have anonymity and security concerns [4]. Anonymity means the identity of the 
data owner should not be identified.   

Let’s consider a real life example where two companies A and B with shared customers 
would like to discover the buying behaviors of their customers. One of the interesting 
behaviors is to find the likelihood for a customer that buys product P1 from A would also buy 
product P2 from B. Due to the competition and business strategies, both companies do not 
agree to disclose their customer details to each other. In this situation, a secure and privacy 
protected framework is needed in order for A and B to mutually benefit.  

Another real life example can be seen in health care related collaboration. Medical records 
for a single patient could be stored at different hospitals. Due to some local policies and 
privacy concerns, hospitals might refuse to share their patients’ data with other parties. 
Without a secure and privacy protected framework, medical data sharing is difficult to 
implement.  
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In this paper, two secure computation protocols and a collaborative framework will be 
presented. We will particularly discuss secure summation protocol and set intersection in this 
paper. However, other sub-protocols such as scalar product computation and set union can 
utilize our collaborative framework.  

In section 2, we discuss the background and related works in multi-party computation. We 
present our semi-trusted framework and secure computation protocols in sections 3 and 4. We 
give analysis on security, privacy and complexity of our protocols in section 5. Our conclusion 
is in section 6. 

2. Background 
When data is distributed in multiple locations, the access of private data by collaborators 
cannot be avoided. With privacy concerns, this data must be protected during the collaborative 
tasks. Whenever private data is being used, there will be a potential risk for privacy breaches. 
Several approaches and protocols have been proposed for data privacy and security protection.  

2.1 Collaborative Works under Trusted Third Party 
One of the direct implementations for multi-party computation is the usage of a trusted third 
party (TTP). Under this approach, all collaborators are connected to a central site. With the 
existence of a TTP, multi-party computation can be performed easily. Each collaborator 
reveals their private data to the TTP and allows the central site to compute the final result. The 
final result is then broadcast to all collaborators. 
 

Fig.1. Trusted Third Party (TTP) Model. 
 

As illustrated in Fig. 1, the TTP serves as central repository that will perform most of the 
operations. Construction of a central repository enables collaborators to share their data with 
other collaborators. However, this approach is viewed as insecure for collaborative works 
because the level of trust between collaborators and the trusted party is always unacceptable. 
The TTP model has been criticized to be too risky because it is always a single point target for 
malicious adversaries. It is an extremely valuable target for malicious parties because it holds 
most of the private data from the collaborators.  

2.2 Secure Multi-party Computation 
Secure Multi-party Computation (SMC) is an important method used to protect shared data. 
The concept of multi-party computation is to enable several parties jointly contribute their 
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private data as the inputs for a specific computation function1. At the end of the computation, 
only the final result is revealed to all parties.  

Secure two-party computation was first studied by Yao in [5]. In two-party computation, 
all computations were carried out by two parties without the involvement of others. Since then, 
many multi-party computation protocols have been proposed. As proved by Goldreich et al. in 
[6], there exists a secure solution for any functionality which can be represented as a 
combinatorial circuit. However, the circuit evaluation is somewhat inefficient for a large 
number of parties because the cost for large inputs can be very high.  

The main objective of SMC is to perform secure computations in the absence of a TTP. 
However, without a TTP, current generic multi-party computations cannot support concurrent 
operations. Most of the approaches required collaborators to perform their operations in a 
sequential way. No parallel operations can be executed because each collaborator needs to 
wait for their direct neighbor to send them the data before they can perform their roles (e.g., 
data permutation, encryption, and etc).  

Fig. 2. Fully Secure Multi-party Computation Model. 
 

In the absence of a TTP, a secure multi-party computation model is shown in Fig. 2. 
Assuming that there are 4 collaborators: Alice (A), Bob (B), Chris (C) and Derick (D),  who 
would like to jointly compute for a specific function. A is the party who initiates the 
computation protocol. Here are some drawbacks in the general multi-party computation 
model:   
• It does not support concurrent operations. No concurrent operations can be performed by 

all collaborators. For instance, B needs to wait for A (initiator) before it can start the 
computation. At the same time, D must wait for A and B before any operation can be 
performed. 

• Possible single point failure problem. During the execution of the protocol, failure of any 
collaborator can cause the termination of the overall protocol. When collaborators are 
relying on each other, the computation can be terminated if one of them fails to perform 
their tasks. If the computation is aborted, the protocol needs to be restarted from the 
beginning. 

• Possible collusions among collaborators. Since each collaborator has at least two direct 
connected neighbors, any two participants can collude together to find out the secret data of 
their common neighbor. For example, B and D can collude together to find the secret data of 
A or C. 

• Two-party computation problem. If only two collaborators are involved in the computation, 
either party can derive the private data of their counterpart based on his own input and the 
final output.   

                                                           
1 The computation functions can be a scalar product of two-party, set union of multi-party, and other set operations. 
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• Chance to act maliciously. In the existing design, all collaborators are connected in a ring. 
When the final output is broadcast to all collaborators, there exists a chance for any party to 
act maliciously by adding noise or alter the original result before sending it to the next party.  

• Unnecessary involvement. In the case where the output is only required by a single party, 
some collaborators might still receive the output since they are connected in between the 
sender and the receiver. If any party ignored or failed to deliver the output, the computation 
protocol will fail. 

• Scalability and flexibility problem. Once the protocol is started, disconnection of any 
participant will terminate the computation protocol. The arrangement of all participants is 
another issue that can limit the flexibility of the current SMC approach.   

• High execution costs. When the size of the accumulated data is large, the communication 
and computation costs will increase.  

2.3 Privacy Preserving Data Mining 
Privacy Preserving Data Mining (PPDM) can be considered as an extension of the existing 
data mining process. Besides the knowledge extractions from a large volume of data, PPDM 
also ensures that all sensitive information is being protected. There are several approaches that 
have been proposed to solve the PPDM problems.  

In 2000, Agrawal and Srikant proposed the first PPDM approach based on the data 
randomization and perturbation technique [7]. Since then, there have been many discussions 
and researches based on this technique [8][9]. As mentioned in [10], this technique is 
somewhat efficient, but there exists a tradeoff between data accuracy and privacy protection. 
When the data is strongly protected, the accuracy of the mining results cannot be accurate [11].   

Cryptography based techniques, such as Secure Multi-party Computation (SMC) which 
was introduced in [12], have been widely studied in PPDM. Under this approach, a group of 
collaborators want to compute a function with their private inputs while keeping their inputs 
private. Only the final result to the query will be learned by the data miner, and no extra 
information should be revealed [6][13]. Lindell and Pinkas [14] examine the SMC problem 
based on cryptography techniques.  

2.4 Summary 
In the general design, participants for SMC or PPDM were connected to each other and formed 
a single continuous pathway. Each collaborator is connected directly with two or more 
neighbors. Outputs from both SMC and PPDM are correct and somewhat privacy protected. 
However, their design had some limitations which can cause significant problems in real 
world implementations. A typical SMC protocol required each party to “compute and pass” 
the accumulated result to the next party (as illustrated in Fig. 2). All parties have at least 
two direct communications with their direct neighbors.  

When the size of the accumulated data becomes large, the communication and computation 
costs will increase. The computation cannot be performed simultaneously because each party 
needs to wait for their queue before they can start to compute and sends the data to the 
following party. If one of the parties fails to transmit the data, the overall computation will be 
stopped and it must be started from the beginning again.  

2.5 Definitions and Notations  

2.5.1 Definitions 
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Definition of Privacy: Under the collaborative framework, raw private data and all other 
permuted data should be protected. Raw data being shared from all collaborators should not be 
revealed to any party (internally or externally) before encryption. Only the data owner is able 
to access the raw data.  

The final result needs to be protected such that no private data can be derived from it. In 
view of collaborator’s privacy concerns, information such as identity, the number of 
collaborators, and where the sources come from should not be revealed. All collaborators 
perform their roles during the protocol execution without the knowledge of the existent of each 
other. The identity of the data miner (collaborator who initiates the operation) needs to be 
hidden from others.  
 
Definition of Security: In terms of security, the protocol is secure if none of them are able to 
collude with each other. No direct communication is allow among collaborators. Both engines 
participate in the computation protocol without colluding with each other or with internal or 
external parties. 

2.5.2 Notations 
Table 1. Common notations used in the paper 

Notation Definition 
DM data miner 
CE computation engine 
BE broadcast engine 
Ci collaborator i 
Epk encryption key from BE 
Dpk decryption key from BE 
Ea encryption key from party a 
Da decryption key from party a 

is  
private input from collaborator i 

'
is  

first encryption by party i 

"
is  

second encryption by party i 

"S  aggregation of doubly-encrypted data 
'S  aggregation of encrypted data after first decryption by the broadcast 

engine 

3. Semi-trusted Collaborative Framework 

3.1 Framework Idea 
The main idea behind our framework design is to provide a collaborative framework which 
can facilitate a secure data sharing mechanism and hence, to support multi-party computation. 
One of our main considerations is to allow collaborators to perform their roles independently 
and concurrently. Ideally, the best solution is by using a single trusted third party (TTP) as 
discussed in section 2.1. However, due to the privacy concerns, a single TTP is not suitable to 
be used in our design. One of the problems with a single TTP is that a completely reliable party 
is not always practical or available. We particularly consider the possibility of single TTP to 
collude with any collaborator to violate our privacy and security definitions in section 2.5. We 
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utilized two semi-trusted engines in our framework, instead of a single TTP. Both 
semi-trusted engines participate in the protocol without learning any extra information or 
knowing the behavior of the collaborators. If both engines collude together, they should 
not learn anything. Our semi-trusted engines should follow the protocol and correctly 
execute the computation without colluding with each other or with any collaborator. 

3.2 Framework Components and Design 
In our proposed framework, we incorporate four components: a data miner (DM), broadcast 
engine (BE), computation engine (CE) and collaborators (Ci). Each component plays their role 
to ensure the computation protocol is executed in a secure environment and the privacy of 
shared data can be protected. The DM is one of the collaborators who initiates the protocol. 
The BE has two important roles during the protocol execution. First, it needs to validate all 
authorized collaborators and broadcasts the encryption key from the DM to all collaborators if 
the validation is successful.  

Second, the BE is involved in the first decryption process. The CE is responsible in 
doubly-encrypted data computation by performing an additive operation in Protocol 1 or 
finding the set intersection in Protocol 2. Collaborators are parties who contribute their private 
data into the computation protocol. Any collaborator can play the role of the DM. We take the 
following assumptions for our framework design:  
1. We assume that any collaborator who initiates the computation protocol will take the role as 

the DM. The encryption key from the DM is viewed as the broadcast key. 
2. All collaborators need to be authenticated by the BE before they can participate in the 

framework. Only authorized collaborators will obtain the encryption key Epk from the BE.  
3. Both engines do not collude together to learn any private data or extra information during 

the execution of the protocol.  
4. The protocol cannot be initiated by either the BE or the CE. Only authorized collaborators 

can initiate the protocol. 
5. The BE must verify the DM as an authorized collaborator within the framework. If the 

verification process fails, the BE terminates the protocol immediately. 
6. The DM needs to validate the broadcast key from the BE. If validation is fails, the DM 

replaces one of the encryption keys (Epk or Ea) with another key.   
7. The CE needs to terminate the protocol if the computation for doubly-encrypted data cannot 

be performed.  
8. All decryption keys are private to their owner.   

The design of our semi-trusted collaborative framework is shown in Fig. 3. We assume 
collaborator A initiates the protocol and takes the role as DM. In our framework, each 
collaborator has direct communication with the BE and the CE. The communications between 
collaborators and both engines are under a secure channel2. The details of the flow in our 
framework are as follows: 

Step 1: The DM encrypts its encryption key (Ea) with Epk and sends Epk(Ea) to the BE. 
Step 2: The BE decrypts and broadcasts Ea to all collaborators (including the DM). 
Step 3: Each collaborator performs double encryptions and sends the output to the CE. 
Step 4: The CE performs secure computation and sends the output to the BE. 

                                                           
2 A secure channel is a way of transferring data with resistant to interception and tampering.  
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Step 5: The BE decrypts and forwards the output to the DM for final decryption. 
 

 

 
Fig. 3. Collaborative framework design. The numbers indicate the steps to perform the protocol. 

 
In step 1, the DM initiates the computation protocol by sending Epk(Ea) to the BE. In step 2, 

the BE decrypts Epk(Ea) to obtain Ea. If the BE cannot decrypt Epk(Ea), it indicates that the DM 
is not an authorized collaborator and the protocol will be terminated. If the decryption 
operation is successful, the BE broadcasts Ea to all collaborators (including the DM). This step 
is important in order for the DM to verify that the BE is a valid engine used within the 
framework. If the broadcast key received is not Ea, the DM replaces one of the encryption keys 
(Epk or Ea) used in the double encryption with another key.  

Next, each collaborator performs double encryptions in step 3 with both encryption keys 
(Epk and Ea) and sends the doubly-encrypted output to the CE. In step 4, the CE performs 
secure computation (i.e., secure summation and set intersection) and sends EaEpk(M) to the BE. 
The protocol will terminate automatically if the CE fails to perform operations on the 
doubly-encrypted data. In step 5, the BE decrypts EaEpk(M) and sends Ea(M) to the DM. 
Finally, the DM decrypts Ea(M)  using Da to obtain M.   

3.3 Framework Communications  
Communication among components is crucial to the security of our collaborative framework. 
We need to ensure that the computation protocol is secure while no extra information is 
revealed. In our design, the communication between the CE and the BE is restricted to 
one-way communication (CE → BE) as shown in Fig. 3.  

When two or more collaborators are connected directly, there might be some chance for 
them to act maliciously. Communication between the DM and the BE is opened for two-way 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 3, June 2010                                                419 

interactions. Both the DM and the BE need to have several interactions during the protocol 
execution including key exchanges, and broadcasting of encryption keys. The details will be 
discussed in a later section.  

 
Table 2. Communication among components in the framework 

Component Communication Direction 
Data Miner (DM) Two-way with BE DM↔BE 

Broadcast Engine (BE) Two-way with DM 
One-way with Ci 

BE↔DM 
BE→Ci 

Collaborators (Ci) One-way with CE Ci→CE 
Computation Engine (CE) One-way with BE CE→BE 

 
The communication among components in our framework is shown in Table 2. The 

notation A↔B indicates two-way communication between A and B, while A→B indicates 
one-way communication from A to B. The communication flow of all components can be seen 
as DM↔BE→Ci→CE→BE. It is clear that all collaborators (including the data miner) will 
not have direct communication to all others.  

4. Computation Protocol 

4.1 Protocol Idea 
The main idea behind our computation protocol is to allow collaborators to securely perform 
collaborative works and protect the shared data without revealing it to any party. Outputs 
during the protocol execution at each stage shall be protected and no extra information can be 
derived from the final result. The final result is accurate if each collaborator contributes their 
private input honestly. In most computation protocols, their focus is either on two-party or 
multi-party computation. The sub-protocols used for two-party or multi-party computation 
could be different or require substantial modifications on the existing protocol before it can be 
used to facilitate different environments. Our protocol shall be able to facilitate the 
computation for two-party or multi-party collaboration at the same time without changes in the 
framework design.  

The design of computation protocol depends on the constraints and consensus among 
collaborators. All collaborators should be able to participate in the computation protocol. 
However, certain cases allow external parties to learn the result without contributing any input 
into the computation protocol. The final result might not be required by all contributors. Hence, 
it should not be broadcast to everyone. In this paper, we assume that the data miner is one of 
the collaborators who contributes their private data for the computation. The final result is 
only required by the data miner.  We are going to use two computation protocols to 
demonstrate the implementation of our semi-trusted 3  collaborative framework. Secure 
summation can be used to demonstrate the steps involved in making a protocol secure [15]. 
We also show that other sub-protocols such as set intersection [16] can be adapted into our 
protocol easily.  

4.2 Homomorphic Encryption Scheme 

                                                           
3 Semi-trusted party only gathers information without modifying the behavior of the parties. 
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We will use the following additive homomorphism proposed by Paillier [17] in our secure 
computation: Let Ea(m) denote the encryption of m with the encryption key, Ea. The scheme 
supports the following operations without the knowledge of the decryption key:  

 Given two ciphertexts Ea(m1) and Ea(m2), there exists an efficient algorithm h+ to 
compute  

)()()( 2121 mmEmEmE aaha +=+  (1)

 Given a constant c and a ciphertext Ea(m1), there exists an efficient algorithm h⋅ to 
compute   

)()( 11 mcEmEc aah ⋅=⋅  (2)

 If m is encrypted with two different encryption keys, Ea and Eb 

))(())(( mEEmEE abba =  (3)

4.3 Our Protocol  
There are three phases in our computation protocol: preparation phase, encryption phase, and 
computation phase.  

Preparation phase. In the preparation phase, the DM and the BE need to generate a 
cryptographic key independently. The encryption key from the BE is broadcast to all 
authorized collaborators before the protocol starts. The DM initiates the protocol by sending 
Epk(Eak) to the BE. Both parties exchange their encryption key while their individual 
decryption key is kept private and is not shared with others. Next, the BE broadcasts Ea to all 
other collaborators. At the end of this phase, each collaborator holds two encryption keys 
(Ea,Epk) that will be used to encrypt their private data in the next phase. 

Preparation Phase: Generation of cryptographic key pair by data miner 
and broadcast engine. 

for Broadcast Engine (BE)  
 generates encryption key, Epk 
 broadcast Epk to all authorized collaborators 
 broadcast Ea if DM is an authorized collaborator 
end for  

for Data Miner (DM) 
 generates encryption key, Ea  
 sends Epk(Ea)to BE 
end for 

Encryption phase. Upon receiving the broadcast key from the BE, each collaborator 
performs doubly-encryption on their private data by using Ea and Epk. Doubly-encrypted data 
will be sent to the CE.   
 
Encryption Phase:  
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Each collaborator encrypts their private data with both encryption keys. 
for each collaborator iC {concurrent operations}do 
 for i=1 to k do 
  )('

iai sEs = and )( '"
ipki sEs =   

 end for  

iC sends "
is to Computation Engine (CE) 

end for 

Computation phase. In this phase, the CE receives k doubly-encrypted data from k 
collaborators. For a secure summation protocol, it performs additive operation to find the 
aggregation of all encrypted data without the decryption keys. The output will be forwarded to 
the BE. Next, the BE decrypts the received output and sends it to the data miner. The Data 
miner is able to find the final output because it holds the final decryption key.  

 
Protocol 1: Secure Summation Protocol 
Inputs: )2(,...,,, 321 ≥kssss k , where si is the private input from each collaborator 

Output: i
k
i sS 1=∪=  

Preparation Phase:  
Generation of cryptographic key pair by data miner and broadcast engine. 
 
Encryption Phase:  
Each collaborator encrypts their private data with both encryption keys. 
 
Computation Phase:  
Computation engine aggregates all encrypted data. 

for CE do 
 for i=1 to k do 
  "

1
"

i
k
i sS =∪=  

 end for  
 Terminate the protocol if aggregation cannot be performed. 
sends "S to BE 
end for 
 
for BE  
 decrypts "S to obtain '

1
'

i
k
i sS =∪=   

Sends 'S to DM 
end for 
 
for DM 
 decrypts 'S to obtains final output, i

k
i sS 1=∪=  

end for 
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for BE  
 decrypts "S to obtain '

1
'

i
k
i sS =∪=   

Sends 'S to DM 
end for 
 
for DM 
 decrypts 'S to obtains final output, i

k
i sS 1=∪=  

end for 
 
For the set intersection protocol, the CE finds the size of the intersection of all encrypted 

data. The CE does not require decryption keys to perform the computation because all data are 
doubly-encrypted with the same encryption keys. The final result can be sent directly to the 
DM or broadcast through the BE. If the final output is only required by the DM, we can 
remove step 4 in our framework design and replace it with a direct connection between the CE 
and the DM.  The details of secure set intersection is shown in Protocol 2.  

 
Protocol 2: Secure Set Intersection Protocol 
Inputs: )2(,...,,, 321 ≥kssss k , where si is the private input from each collaborator 

Output: i
k
i sS 1=∩=  

Preparation Phase:  
Generation of cryptographic key pair by data miner and broadcast engine. 
 
Encryption Phase:  
Each collaborator encrypts their private data with both encryption keys. 
 
Computation Phase:  
Computation engine finds the intersection of all encrypted data. 

for CE do 
 for i=1 to k do 
  i

k
ii

k
i ssS 1

"
1 == ∩=∩=  

 end for  
sends S to BE 
end for 

4.5 Proof of Security and Correctness 
The proof of security for our protocol depends on how much information has been revealed 
during the execution of the computation protocol. At the same time, our computation protocol 
should output a correct and accurate result.  

Theorem 1: Additive operation performed by the CE in Protocol 1 is correct and precise 
without the need of decryption keys.  

Proof: Based on Eq. 1, we can derive the additive operation for doubly-encrypted data as 
follow: Lets )( 1mEx b= and )( 2mEy b= , 
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))(())(( 21 mEEmEE bahba +  
)()( yExE aha +=  

)( yxEa +=  
))(( 21 mmEE ba +=  (4)

 
As shown in Eq. 4, the CE does not required any encryption key in order to aggregate all 

encrypted data.   

Theorem 2: Protocol 1 computes the summation of all private data (denoted as i
k
i sS 1=∪= ) 

without revealing extra information to any party.  

Proof: Since each collaborator encrypts their private data with two encryption keys, no single 
party is able to decrypt the encrypted data. In our protocol, the CE aggregates all encrypted 
data without the knowledge of decryption keys. No party can see extra information during the 
execution of our protocol except the data miner at the end of the protocol. As for collaborators, 
they only participate in the encryption process without knowing other collaborators’ identity. 
Both encryption keys must be used in this phase. Since collaborators do not have direct 
communication with each other, private data is secure and can only be viewed by its owner 
before the encryption operation.  At the computation engine, all received data are in encrypted 
form (doubly-encrypted). The CE cannot see the private data because none of the decryption 
keys is known. Furthermore, the decryption process requires both decryption keys stored at the 
BE and the DM site. The BE will perform the first decryption process in the protocol. After the 
first decryption, the BE is not able to see the final result because the final decryption key is 
held by the DM.    

Theorem 3: Assuming that all collaborators follow the protocol, the computation protocol 
correctly computes the summation of all private data, i

k
i sS 1=∪= .  

Proof: When each collaborator encrypts their private data with both encryption keys, each of 
them has ))(("

ipkai sEEs = . The CE aggregates all doubly-encrypted data based on the 
Homomorphic Encryption Scheme in section 2.3.1. Hence, we have  

 
""

1
"
2

"
1

" ... kk ssssS ++++= −  
))(())((...))(())(( 121 kpkahkpkahhpkahpka sEEsEEsEEsEE ++++= −  

))...(( 121 kkpka ssssEE ++++= −  
 
After the first decryption by the BE, we have  
 

)( "' SDS pk=  

))...(( 121 kka ssssE ++++= − . 
 

After the DM performs the last decryption, we will obtain the final result  
 

)( 'SDS a=  
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)...( 121 kk ssss ++++= −  

i
k
i s1=∪=  

 
The result from this protocol is correct.  

Theorem 4: Assuming that all collaborators follow the protocol, the computation protocol 
correctly computes the set intersection of all private data, i

k
i sS 1=∩= . 

Proof: After each collaborator encrypts their private data with both encryption keys, the CE 
can determine the size of intersection for all received doubly-encrypted data. For any two 
doubly-encrytped data "

is and "
js  (where i≠j), the CE can check the their intersection based on 

Eq. 3: 

))(())(( jpkaipka sEEsEE =  if ji ss =  

Hence, the CE correctly computes the size of the intersection for all encrypted data. 

5. Analysis and Discussions 
In general, our protocol is able to support two-party or multi-party computation in a secure and 
privacy preserved environment. Since private data from each collaborator has been encrypted 
before they are used in the protocol, any party listening to the network traffic is not able to 
learn anything. All collaborators can perform concurrent operations during the execution of 
the protocol. In our design, each collaborator performs their operations independently without 
interference from others. They do not have to wait for others before they can perform their 
individual operation. Failure of any collaborator will not terminate the overall computation 
processes (single point failure problem). If any of the collaborators fails during the execution 
of our protocol, it will not stop others from continuing their operations.   

5.1 Security Analysis  
In our design, the BE can terminate the protocol if the DM is not an authorized collaborator. 
Once the verification process is successful, the BE will broadcast the encryption key from the 
DM to all collaborators. The DM is able to verify the BE based on the broadcast key it receives. 
The verification processes between the DM and the BE is essential in order to prevent 
malicious activities from parties who intend to interrupt the protocol. We considered two 
possible malicious attacks in our framework: (1) external attacks and (2) internal attacks.  

External attacks involve external parties who are interested in learning some knowledge 
from the computation protocol. This knowledge may include the identity of collaborators, raw 
private data, intermediate results, and final output. Our collaborative framework is able to 
prevent external attacks such as a man-in-the-middle (MITM) attack4. In step 1, a malicious 
party, Eve may want to intercept Ea and replace it with her key Ea’ . However, due to our 
framework design, it is impossible for Eve to verify herself as an authorized collaborator. The 
BE will terminate the protocol whenever the verification process fails. As such, Eve cannot 
continue the malicious attack in our framework.  

                                                           
4 Man-in-the-middle attack (or known as bucket-brigade attack) is a form of eavesdropping where attacker 
impersonate to be the real component during the computation protocol.  
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Components within the framework may act maliciously or collude together for some 
malicious activities. This type of internal attack is more serious as compared to the external 
attacks because internal attackers have more knowledge about the private data, intermediate 
results, and computation outputs. It might be possible for the BE to act maliciously by 
substituting Ea with its key, Ea’. Then, the BE broadcasts Ea

’ to all collaborators. Collaborators 
will continue to participate in the protocol because they cannot determine whether the key 
received from the BE is generated by the DM. If the DM receives Ea

’ from the BE, it can 
conclude that the BE is performing a malicious attack. The DM cannot terminate the protocol 
at this point because other collaborators have already started to participate in the protocol. In 
order to prevent this attack, the DM replaces one of the encryption keys (Epk or Ea) used in 
double encryptions with another key, Eb. In step 3, the CE receives doubly-encrypted data 
from all collaborators (including data from the DM). Since the DM encrypts his data with 
different sets of encryption keys, the CE will not be able to perform operations on the 
doubly-encrypted data. As shown in Theorem 1, additive operation for doubly-encrypted data 
is only possible if the same encryption keys were used in the encyption. If the CE cannot 
aggregate all doubly-encrypted data, it terminates the protocol immediately.  

In our design, we do not allow direct communications among collaborators. This step is 
essential to prevent collaborators from colluding with each other. BE cannot collude with 
collaborators because of the one-way communication. Two engines being used in our 
framework to ensure that there is no single point of data compromise. It is not easy for a 
malicious adversary to control both engines at the same time. 

5.2 Complexity Analysis  
In terms of complexity, our protocol is determined by the communication and computation 
costs. The following contribute to the computation costs in our protocol: (1) Generation of 
cryptographic key pair by the data miner and broadcast engine. (2) The number of encryptions 
and decryptions in the computation and (3) Computation of additive homomorphic encryption 
by the computation engine. 

5.3 Real World Implementation  
Our collaborative framework is able to support collaborative works in a multi-party 
environment. Medical data sharing is one of the real world implementations which can utilize 
our collaborative framework design. The integration of information technology into the 
biomedical field has enabled practitioners and hospitals to collect, store, and analyze patient’s 
medical records efficiently. Medical data sharing or information sharing has emerged as an 
important element in the health care industry to ensure the quality of health services. However, 
the level of correctness for shared medical data is important. By using our framework, 
hospitals (or other data owners) can act as collaborators while government agencies play the 
role of broadcast and computation engine.  

6. Conclusions 
In most of the secure computation protocols, collaborators need to participate in the 
computation. They are required to contribute local private data (either original or encrypted 
form) during the computation and take part in the computation. In some cases, it is not 
necessary for the data miner to reveal their private data when they are initializing the protocol. 
The final result is also not necessary to be broadcast to all participants at the end of the 
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protocol. In this paper, we have focused on the collaborative framework for secure 
computation. Our collaborative framework can support two or more parties without revealing 
any extra information to any party. Compared with the existing approaches, our solution is 
more practical in terms of scalability and reliability in addition to security and privacy 
protection. At the end of the computation, only the data miner is able to view the final result. 
No extra information will be revealed. Other sub-protocols such as set union and scalar 
product can be easily implemented using our framework.  
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