• 제목/요약/키워드: Computation problem

Search Result 1,290, Processing Time 0.03 seconds

An Optimal Real and Reactive Power dispatch using Evolutionary Computation (진화연산을 이용한 유효 및 무효전력 최적배분)

  • You, Seok-Ku;Park, Chang-Joo;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.166-168
    • /
    • 1996
  • This paper presents an power system optimization method which solves real and reactive power dispatch problems using evolutionary computation such as genetic algorithms(GAs), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most these approaches have the common defect of being caught to a local minimum solution. Recently, global search methods such as GAs, EP, and ES are introduced. The proposed methods, applied to the IEEE 30-bus system, were run for 12 other exogenous parameters. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.

  • PDF

Development of Interactive Graphical Software for Power Flow Education (그래픽을 이용한 대화식 교육용 전력조류계산 소프트웨어 개발)

  • Lee, Uk-Hwa;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.39-41
    • /
    • 1993
  • This paper presents the development of interactive graphical software for the educational purpose of power flow(PF) calculation. The developed software is specially designated to give a beginner the interest on PF problem as well as to increase the understanding of it with ease. the software developed in this paper is basically composed of the pull-down menu driver, in which various functions, such as Program Master, Data File Management, Case Study Option, PF Run and View Output, are prepared to handle the software easily and thus to be familiar with power flow calculation. A special design is also considered for interactive operation of the software, wi th which user can interrupt the computation process of PF to control the convergency of PF algorithm, With this function begineer can acquire the understanding of convergency characteristics and numerical sensitivity of PF algorithm as well as basic concept of its computation logic. Futhermore, various graphic illustrations is also provided to review and compare the computation results on monitor.

  • PDF

An Approximation of Gaussian Pyramid Top Layer for Simplification of Image Pyramid-based Multi Scale Exposure Fusion Algorithm (이미지 피라미드 기반의 다중 노출 영상 융합기법 단순화를 위한 가우시안 피라미드 최상층 근사화)

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1160-1167
    • /
    • 2019
  • Because of the dynamic range limitation of digital equipment, it is impossible to obtain dark and bright areas at the same time with one shot. In order to solve this problem, an exposure fusion technique for fusing a plurality of images photographed at different exposure amounts into one is being studied. Among them, Laplacian pyramid decomposition based fusion method can generate natural HDR image by fusing images of various scales. But this requires a lot of computation time. Therefore, in this paper, we propose an approximation technique that achieves similar performance and greatly shortens computation time. The concept of vanishing point image for approximation is introduced, and the validity of the proposed approach is verified by comparing the computation time with the resultant image.

Computation Offloading with Resource Allocation Based on DDPG in MEC

  • Sungwon Moon;Yujin Lim
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.226-238
    • /
    • 2024
  • Recently, multi-access edge computing (MEC) has emerged as a promising technology to alleviate the computing burden of vehicular terminals and efficiently facilitate vehicular applications. The vehicle can improve the quality of experience of applications by offloading their tasks to MEC servers. However, channel conditions are time-varying due to channel interference among vehicles, and path loss is time-varying due to the mobility of vehicles. The task arrival of vehicles is also stochastic. Therefore, it is difficult to determine an optimal offloading with resource allocation decision in the dynamic MEC system because offloading is affected by wireless data transmission. In this paper, we study computation offloading with resource allocation in the dynamic MEC system. The objective is to minimize power consumption and maximize throughput while meeting the delay constraints of tasks. Therefore, it allocates resources for local execution and transmission power for offloading. We define the problem as a Markov decision process, and propose an offloading method using deep reinforcement learning named deep deterministic policy gradient. Simulation shows that, compared with existing methods, the proposed method outperforms in terms of throughput and satisfaction of delay constraints.

Collision-Free Motion Planning of a Robot Using Free Arc concept (프리아크 개념을 이용한 로봇의 충돌회피 동작 계획)

  • Lee, Seok-Won;Nam, Yun-Seok;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF

Priority Rule Based Heuristics for the Team Orienteering Problem

  • Ha, Kyoung-Woon;Yu, Jae-Min;Park, Jong-In;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.17 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • Team orienteering, an extension of single-competitor orienteering, is the problem of determining multiple paths from a starting node to a finishing node for a given allowed time or distance limit fixed for each of the paths with the objective of maximizing the total collected score. Each path is through a subset of nodes, each of which has an associated score. The team orienteering problem has many applications such as home fuel delivery, college football players recruiting, service technicians scheduling, military operations, etc. Unlike existing optimal and heuristic algorithms often leading to heavy computation, this paper suggests two types of priority rule based heuristics-serial and parallel ones-that are especially suitable for practically large-sized problems. In the proposed heuristics, all nodes are listed in an order using a priority rule and then the paths are constructed according to this order. To show the performances of the heuristics, computational experiments were done on the small-to-medium sized benchmark instances and randomly generated large sized test instances, and the results show that some of the heuristics give reasonable quality solutions within very short computation time.

Effects of Space Increment and Time Step to the Accuracy of the Implicit Finite Difference Method in a Two-Dimensional Transient Heat Conduction Problem (이차원과도열전도에 대한 음함수형 유한차분법의 정도에 미치는 공간증분 및 시간간격의 영향)

  • CHO Kwon-Ok;LEE Yong-Sung;OH Hoo-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 1985
  • The study on computation time, accuracy, and convergency characteristic of the implicit finite difference method is presented with the variation of the space increment and time step in a two-dimensional transient heat conduction problem with a dirichlet boundary condition. Numerical analysis were conducted by the model having the conditions of the solution domain from 0 to 3m, thermal diffusivity of 1.26 $m^2/h$, initial condition of 272 K, and boundary condition of 255.4 K. The results obtained are summarized as follows : 1) The degree of influence with respect to the accuracy of the time step and space increment in the alternating-direction implicit method and Crank-Nicholson implicit method were relatively small, but in case of the fully implicit method showed opposite tendency. 2) To prescribe near the zero for the space increment and tine step in a two dimensional transient problem were good in a accuracy aspect but unreasonable in a computational time aspect. 3) The reasonable condition of the space increment and the time step considering accuracy and computation time could be generalized with the Fourier modulus increment, F, ana dimensionless space increment, X, irrespective of the solution domain.

  • PDF

Trends in Hardware Acceleration Techniques for Fully Homomorphic Encryption Operations (완전동형암호 연산 가속 하드웨어 기술 동향)

  • Park, S.C.;Kim, H.W.;Oh, Y.R.;Na, J.C.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2021
  • As the demand for big data and big data-based artificial intelligence (AI) technology increases, the need for privacy preservations for sensitive information contained in big data and for high-speed encryption-based AI computation systems also increases. Fully homomorphic encryption (FHE) is a representative encryption technology that preserves the privacy of sensitive data. Therefore, FHE technology is being actively investigated primarily because, with FHE, decryption of the encrypted data is not required in the entire data flow. Data can be stored, transmitted, combined, and processed in an encrypted state. Moreover, FHE is based on an NP-hard problem (Lattice problem) that cannot be broken, even by a quantum computer, because of its high computational complexity and difficulty. FHE boasts a high-security level and therefore is receiving considerable attention as next-generation encryption technology. However, despite being able to process computations on encrypted data, the slow computation speed due to the high computational complexity of FHE technology is an obstacle to practical use. To address this problem, hardware technology that accelerates FHE operations is receiving extensive research attention. This article examines research trends associated with developments in hardware technology focused on accelerating the operations of representative FHE schemes. In addition, the detailed structures of hardware that accelerate the FHE operation are described.

An Achievement rate Approach to Linear Programming Problems with Convex Polyhedral Objective Coefficients

  • Inuiguchi, Masahiro;Tanino, Tetsuzo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.501-505
    • /
    • 1998
  • In this paper, an LP problem with convex polyhedral objective coefficients is treated. In the problem, the interactivities of the uncertain objective coefficients are represented by a bounded convex polyhedron (a convex polytope). We develop a computation algorithm of a maxmin achievement rate solution. To solve the problem, first, we introduce the relaxation procedure. In the algorithm, a sub-problem, a bilevel programing problem, should be solved. To solve the sub-problem, we develop a solution method based on a branch and bound method. As a result, it is shown that the problem can be solved by the repetitional use of the simplex method.

  • PDF

The University Examination And Course Timetabling Problem With Integer Programming

  • Chung, Yerim;Kim, Hak-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.9-20
    • /
    • 2019
  • In this paper, we study the university timetabling problem, which consists of two subproblems, the university course timetabling problem and the examination timetabling problem. Given a set of classrooms, students, teachers, and lectures, the problem is to assign a number of courses (and examinations) to suitable timeslots and classrooms while satisfying the given set of constraints. We discuss the modeling and solution approaches to construct course and examination timetables for one of the largest Korean university. By using binary integer programming formulations, we describe these two complex real-world problems. Then, we propose a solution method, called NOGOOD, to solve the examination timetabling model. The computation results show that NOGOOD finds the optimal examination schedule for the given instance. Although we consider a specific instance of the university timetabling problem, the methods we use can be applicable to modeling and solving other timetabling problems.