• 제목/요약/키워드: Compressive strength evaluation

검색결과 860건 처리시간 0.03초

반발 경도법 및 충격반향기법을 이용한 콘크리트 슬래브의 압축강도 비교에 관한 연구 (A Study Using Rebound Method and Impact Echo Method for the Comparison of the Compressive Strength of Concrete Slab)

  • 홍성욱;조영상
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권3호
    • /
    • pp.199-207
    • /
    • 2008
  • 최근 구조물이 노후화되면서 기존 구조물과 시공품질을 관리하는 비파괴검사 평가의 요구가 증가되고 있다. 콘크리트 구조물의 압축강도 추정의 중요성이 건설업계에서 또한 점차적으로 증대되고 있는 실정이고, 시공관리와 품질관리에 있어서 중요한 요소이다. 본 연구는 콘크리트의 압축강도를 비교하기 위한 비파괴 검사법 중 슈미트해머 시험과 충격반향기법을 이용하여 수행되었다. 콘크리트 압축강도와 슈미트해머에 의한 반발경도 값과 충격반향기법 실험결과와의 관계를 알아내는데 초점을 두었으며, 콘크리트의 압축강도와 반발경도 값은 밀접한 관계가 있음을 알 수 있었다.

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

알칼리 자극제가 지오폴리머 페이스트의 압축강도와 탄산화 특성에 미치는 영향에 관한 연구 (A study on the Effect of Alkali-admixture on Compressive Strength and Carbonation properties of Geopolymer paste)

  • 윤창복;박장현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.187-188
    • /
    • 2022
  • In this study, the compressive strength and carbonation properties of geopolymer paste according to the amount of alkali admixture added were evaluated for the development of geopolymer concrete that recycles industrial waste. A geopolymer paste specimen was prepared using Ca(OH)2 as an admixture, and the prepared specimen was standard cured for 28 days. After curing, the compressive strength of the specimen was measured. As the amount of alkali admixture increased, the compressive strength increased. After curing, carbonation was carried out for 7 days in a CO2 5% environment. As a result of comparative evaluation of the amount of CaCO3 produced according to carbonation, the amount of CaCO3 produced increased as the amount of Ca(OH)2 added increased. However, when the amount of admixture added exceeds 5%, the increase rate decreases, so the optimum addition rate is considered to be 5%.

  • PDF

수분증발조건 및 압축강도에 따른 고강도콘크리트의 크리프 특성 평가 (Evaluation of the Creep Properties of High Strength Concrete according to Moisture Evaporation and Compressive Strength)

  • 배창오;김규용;함은영;구경모;김홍섭;윤민호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.75-76
    • /
    • 2012
  • In this study, it was evaluated about creep properties of high strength concrete according to compressive strength and moisture evaporation condition. As a results, creep strain and creep coefficient was greatly affected by moisture evaporation conditions rather than compressive strength. Also, the effect of fiber mixed was not show big difference.

  • PDF

콘크리트 압축강도와 띠철근의 체적비에 따른 R/C 단주의 내력평가 (Evaluation of R/C Short Columns Strength by Concrete Compressive Strength and Transverse Reinforcement Ratios)

  • 김경회;김재환;한범석;반병열;이광수;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.505-508
    • /
    • 1999
  • To evaluate the strength of square reinforced concrete shot columns, thirty specimens were manufactured and tested under monotonically increasing concentric compression. The test parameters included the volumetric ratio of transverse reinforcement($\rho$h = 0.49~2.65), and concrete compressive strength (234, 437, 704 kgf/$\textrm{cm}^2$). Test results are shown that : (1) Behavior of high -strength concrete column is improved by providing increased volumetric ratio; and (2) ACI, Eq. is not proper to evaluate HSC short column strength.

  • PDF

Strength Modeling of Mechanical Strength of Polyolefin Fiber Reinforced Cementitious Composites

  • Sakthievel, P.B.;Ravichandran, A.;Alagumurthi, N.
    • Journal of Construction Engineering and Project Management
    • /
    • 제4권2호
    • /
    • pp.41-46
    • /
    • 2014
  • RCC consumes large quantities of natural resources like gravel stone and steel, and there is a need to investigate on an innovative material that utilizes limited quantities of natural resources but should have good mechanical strength. This study deals with the experimental investigation of strength evaluation of cementitious composites reinforced with polyolefin fibers from 0% to 2.5% (with interval of 0.5%), namely Polyolefin Fiber Reinforced Cementitious Composites (PL-FRCC) and developing statistical regression models for compressive strength, splitting-tensile strength, flexural strength and impact strength of PL-FRCC. Paired t-tests (for each PL fiber percentage 0 to 2.5%) bring out that there is significant difference in compressive and splitting-tensile strength when curing periods (3, 7, 28 days) are varied. Also, a strong relationship exists between the compressive and flexural strength of PL-FRCC. The proposed mathematical models developed in this study will be helpful to ascertain the mechanical strength of FRCC, especially, when the fiber reinforcing index is varied.

비파괴시험 자료를 적용한 콘크리트 기준강도의 통계적 추정 (Statistical Estimation of Specified Concrete Strength by Applying Non-Destructive Test Data)

  • 백인열
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.52-59
    • /
    • 2015
  • The aim of the paper is to introduce the statistical definition of the specified compressive strength of the concrete to be used for safety evaluation of the existing structure in domestic practice and to present the practical method to obtain the specified strength by utilizing the non-destructive test data as well as the limited number of core test data. The statistical definition of the specified compressive strength of concrete in the design codes is reviewed and the consistent formulations to statistically estimate the specified strength for assessment are described. In order to prevent estimating an unrealistically small value of the specified strength due to limited number of data, it is proposed that the information from the non-destructive test data is combined to that of the minimum core test data. The the sample mean, standard deviation and total number of concrete test are obtained from combined test data. The proposed procedures are applied to an example test data composed of the artificial numerical values and the actual evaluation data collected from the bridge assessment reports. The calculation results show that the proposed statistical estimation procedures yield reasonable values of the specified strength for assessment by applying the non-destructive test data in addition to the limited number of core test data.

고강도 내화 콘크리트의 강도 영역에 따른 현장 적용성 평가에 관한 연구 (A Study on Applicability Evaluation according to Strength Range of High-Strength Fire Resistance Concrete)

  • 장종민;백영운;육태원;박동수;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.177-178
    • /
    • 2023
  • In this study, the mass production process was simulated using a 1m3 batcher plant to evaluate the application of high-strength fire resistance concrete. The strength ranges of concrete were set to 50, 60, 70, and 80 MPa, and each concrete mix proportions was selected through preliminary experiments in the laboratory. For the selected concrete mix proportions, after the mixer load value was stabilized in the batcher plant, the slump flow and air content of the fresh concrete were evaluated, and the compressive strength was evaluated up to 56 days. As a result of the experiment, both the slump flow and air content of the fresh concrete satisfied the target performance, and in the case of compressive strength, 50 and 60 MPa satisfied the target performance at 28 days and 70 and 80 MPa at 56 days.

  • PDF

Development of an integrated machine learning model for rheological behaviours and compressive strength prediction of self-compacting concrete incorporating environmental-friendly materials

  • Pouryan Hadi;KhodaBandehLou Ashkan;Hamidi Peyman;Ashrafzadeh Fedra
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.181-195
    • /
    • 2023
  • To predict the rheological behaviours along with the compressive strength of self-compacting concrete that incorporates environmentally friendly ingredients as cement substitutes, a comparative evaluation of machine learning methods is conducted. To model four parameters, slump flow diameter, L-box ratio, V-funnel time, as well as compressive strength at 28 days-a complete mix design dataset from available pieces of literature is gathered and used to construct the suggested machine learning standards, SVM, MARS, and Mp5-MT. Six input variables-the amount of binder, the percentage of SCMs, the proportion of water to the binder, the amount of fine and coarse aggregates, and the amount of superplasticizer are grouped in a particular pattern. For optimizing the hyper-parameters of the MARS model with the lowest possible prediction error, a gravitational search algorithm (GSA) is required. In terms of the correlation coefficient for modelling slump flow diameter, L-box ratio, V-funnel duration, and compressive strength, the prediction results showed that MARS combined with GSA could improve the accuracy of the solo MARS model with 1.35%, 11.1%, 2.3%, as well as 1.07%. By contrast, Mp5-MT often demonstrates greater identification capability and more accurate prediction in comparison to MARS-GSA, and it may be regarded as an efficient approach to forecasting the rheological behaviors and compressive strength of SCC in infrastructure practice.

고로슬래그 미분말을 다량 치환한 모르타르의 압축강도 평가 (Evaluation of Compressive Strength of Mortar Replaced to High Volume Blast Furnace Slag)

  • 이보경;김규용;이세범;이병천;신경수;김홍섭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.103-105
    • /
    • 2012
  • With blast-furnace slag is a by-product generated when pig iron is produced. It has been used as the concrete admixture due to high reactivity. However, It causes low strength development during early age. In order to make up for this drawback, in this study, we evaluated compressive strength of mortar replaced with high volume blast-furnace slag. Experimental results, Compressive strength of mortar based on blast-furnace slag is affected by cement type, substitution rate of blast-furnace slag and pH after mixing.

  • PDF