• Title/Summary/Keyword: Compression pressure

Search Result 1,372, Processing Time 0.025 seconds

The Comparison on the Compression Measurement Value of Medical Compression Stockings (수입 의료용 압박스타킹의 압력 측정치 비교)

  • Do, Wol-Hee;Kim, Nam-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1060-1074
    • /
    • 2013
  • This study measured and analyzed pressure at each measurement part of imported compression stockings sold in Korea to provide basic information to establish a pressure standard and grade ranking. This study used 40 medical compression stockings imported from 6 countries. Pressure measurements were taken at 11 points: front side and back side of ankle, end-point of the gastrocnemius muscle, front, inner side, back, and outer side of calf, back side of below knew girth, inner side, and outer side of mid-thigh girth, and inner side of thigh girth. AMI 3037-10 and AMI 3037-2 were used for measurements taken inside an environmental chamber at a temperature of $21^{\circ}C$ and a relative humidity (RH) of 65%. For the measurements, 11 air pack sensors were attached to a wooden model leg (Hohenstein) and three measurements were taken at each measurement point in three minutes. The average of these measurements was used for analysis. The findings of this study were as follows. As for the front side of the ankle, of the 40 products, 14 products (6 USA, 2 Swiss, 3 Italian, and 2 Taiwanese) were within the pressure range indicated on the product label; however, no German products fell within the pressure range. A total of 8 products (5 USA, 1 Swiss, 1 Italian, and 1 German) were gradient compression type; however, no Japanese or Taiwanese product were of this type. The majority of products had the highest pressure at the end-point of the gastrocnemius muscle. Only 3 products, 1 USA (Jobst Opaque 30-40mmHg), 1 Swiss (Sigvaris Cotton 34-46mmHg) and 1 Italian (Jobstocking 25-32mmHg), had measurements that met the indicated standard pressure, were a gradient compression type, and met the overall standard for compression stockings.

An Experimental Study on Heat Transfer and Flow in Compression Molding of SMC (SMC 압축성형의 열 및 유동에 관한 실험적 연구)

  • 김기택;정진호;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2386-2395
    • /
    • 1994
  • An experimental study on heat transfer and flow in compression molding of clss-B and A SMC(Sheet Molding Compounds) in a flat plate and a cross-sectional T-shape was carried out. The temperature was measured with thermocouples at two locations in the 4 layered SMC charge and pressure was measured at the center of the top mold during compression molding. Three different mold speeds, 15, 45, 50 mm/min and two different mold temperature, $130^{\circ}C{\;}and{\;}150^{\circ}C$ were used for compression molding experiments. Experiments with different colored SMC layers were used to study flow patterns at various compression stages. In oder to predict the pressure and load in SMC compression molding, slab method was used. The predicted values of pressure and load from the slab analysis were compared well with the measured data.

Analysis of Cylinder Compression Pressure & Valve Timing by Motoring Current & Crank Signal during Cranking (모터링시 전류 파형과 크랭크각 센서를 이용한 기관의 압축압력 및 밸브 타이밍 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.45-50
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Conventional method, however, to check compression pressure uniformity is done by mechanical pressure gage and valve timing is checked manually. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and temperature. Also to check valve timing, related FEAD parts should be disassembled and timing mark should be checked. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. Results, it is found that detection of bulky as well as small leaky cylinder is possible by cranking motor current analysis and wrong valve timing can be detected by cylinder pressure analysis and cam and crank sensor signal.

Development of Design Method of Compression(SSC) Anchor (압축헝 앵커의 설계법 개발)

  • 임종철;홍석우;이태형;이외득
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.63-78
    • /
    • 1999
  • For the design of compression anchor, three things should be considered. The first is a resistance force by skin friction, the second is a tension strength of tendon, and the third is a compressive strength of grout. Especially, compressive strength of grout is the most important design parameter of compression anchor. When compression anchor is pulled out from the ground, the compressive strength of grout increases by confining pressure of ground($\sigma_{tg$). Here, $\sigma_{tg$ is the confining pressure which is produced by earth pressure at rest and by lateral expansion of grout. We call this phenomenon of increase of confining pressure "poisson effect". In this paper, the design method of compression anchor called SSC anchor and the computer program for the design are developed through compression tests of anchor body grout.ody grout.

  • PDF

Pressure Variation Characteristics at Trapping Region in Oil Hydraulic Piston Pumps (유압 피스톤 펌프의 폐입구간에서 발생하는 압력변동 특성)

  • Kim, Jong-Ki;Jung, Jae-Youn;Rho, Byung-Joon;Song, Kyu-Keun;Oh, Seok-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2071-2075
    • /
    • 2003
  • Pressure variation is one of the major sources on noise emission in the oil hydraulic piston pumps. Therefore, it is necessary to clarify about pressure variation characteristics of the oil hydraulic piston pumps to reduce noise. Pressure variations in a cylinder at trapping region were measured during pump working period with discharge pressures, rotational speeds. The effect of pre-compression of the discharge port with three types valve plates also investigated. It was found that the pressure variation characteristics of oil hydraulic piston pumps deeply related with pre-compression design of the discharge port. Also, it was found that the pressure overshoot at trapping region can reduce by use of pre-compression at the end of the discharge port in valve plate

  • PDF

One-Dimensional Numerical Study of Compression Wave Propagating in High-Speed Railway Tunnel (고속철도 터널내를 전파하는 압축파의 일차원 수치해석)

  • 김희동;엄용균;송미일태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1280-1290
    • /
    • 1995
  • In order to investigate the compression wave propagating in a high-speed railway tunnel, a numerical calculation was applied to the wave phenomenon occurring in a model tunnel. Unsteady, one-dimensional inviscid or viscous flows were solved by an explicit TVD scheme, and the calculated flows were compared with the results of measurement in real tunnels. Tunnel noises caused by emission of the compression wave were characterized in terms of excess pressure of compression wave, pressure gradient in the wave front and width of the compression wave. Calculated attenuation, pressure gradient and width of compression wave with the propagating distance agreed with the results of measurement in the real tunnels. The results also show that tunnel noises are proportional to the train velocity entering the tunnel.

Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure

  • Noh, Ye Ji;Kim, Han Sang;Kim, Seong Yun
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.243-247
    • /
    • 2012
  • A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of $2.1{\Omega}$. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S $m^{-1}$, where the weight fraction of the CNT mat was 36.5%.

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways (고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구)

  • 목재균;백남욱;유재석;최윤호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

Injection/compression molding for micro pattern (미세패턴 성형을 위한 사출 압축 성형 공정 기술)

  • Yoo Y.E.;Kim T.H.;Kim C.W.;Je T.J.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.100-104
    • /
    • 2005
  • The injection molding is very effective process for various plastic products due to its high productivity. It is also good fur precise products like optical parts. Various thermoplastic materials are also available with this injection molding process. In recent, however, as the overall size of the product increases and micro or nano scale of patterns are applied to the products, we now have some problems such as low fidelity of the replication of the pattern, high molding pressure, or warpage from the in-mold stress. Injection/compression molding is studied to overcome those problems in molding large thin plate with micro pattern array on its surface. An injection compression mold is designed to 3 pieces mold for side gate. We install 4 pressure transducers and 9 thermocouples to measure the melt pressure and surface temperature in the cavity during the process. As a result, the maximum molding pressure for injection compression molding is reduced to 1/3 compared to injection molding and the uniformity of the pressure in the cavity is enhanced by about 15%.

  • PDF