Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.4.243

Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure  

Noh, Ye Ji (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Kim, Han Sang (Department of Mechanical and Automotive Engineering, Gachon University)
Kim, Seong Yun (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Publication Information
Carbon letters / v.13, no.4, 2012 , pp. 243-247 More about this Journal
Abstract
A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of $2.1{\Omega}$. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S $m^{-1}$, where the weight fraction of the CNT mat was 36.5%.
Keywords
carbon nanotube mat; composite; cyclic butylene terephthalate; electrical conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Whitten PG, Spinks GM, Wallace GG. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon, 43, 1891 (2005). http://dx.doi.org/10.1016/j.carbon. 2005.02.038.   DOI   ScienceOn
2 Cooper SM, Chuang HF, Cinke M, Cruden BA, Meyyappan M. Gas permeability of a buckypaper membrane. Nano Lett, 3, 189 (2003). http://dx.doi.org/10.1021/nl0259131.   DOI   ScienceOn
3 Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 284, 1340 (1999). http://dx.doi.org/10.1126/science.284.5418.1340.   DOI   ScienceOn
4 Prasad D, Zhiling L, Satish N, Barrera EV. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology, 15, 379 (2004). http://dx.doi.org/10.1088/0957-4484/15/3/026.   DOI   ScienceOn
5 Knapp W, Schleussner D. Field-emission characteristics of carbon buckypaper. 21, 557 (2003). http://dx.doi.org/10.1116/1.1527598.   DOI   ScienceOn
6 Wang Z, Liang Z, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites A: Appl Sci Manuf, 35, 1225 (2004). http://dx.doi.org/10.1016/j.compositesa. 2003.09.029.   DOI   ScienceOn
7 Shiren W, Zhiyong L, Giang P, Young-Bin P, Ben W, Chuck Z, Leslie K, Percy F. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology, 18, 095708 (2007). http://dx.doi. org/10.1088/0957-4484/18/9/095708.   DOI   ScienceOn
8 Frizzell CJ, in het Panhuis M, Coutinho DH, Balkus KJ Jr., Minett AI, Blau WJ, Coleman JN. Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Phys Rev B, 72, 245420 (2005). http://dx.doi.org/10.1103/PhysRevB.72.245420.   DOI   ScienceOn
9 Coleman JN, Blau WJ, Dalton AB, Munoz E, Collins S, Kim BG, Razal J, Selvidge M, Vieiro G, Baughman RH. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett, 82, 1682 (2003). http://dx.doi.org/10.1063/1.1559421.   DOI   ScienceOn
10 Lahiff E, Leahy R, Coleman JN, Blau WJ. Physical properties of novel free-standing polymer-nanotube thin films. Carbon, 44, 1525 (2006). http://dx.doi.org/10.1016/j.carbon.2005.12.018.   DOI   ScienceOn
11 Song L, Zhang H, Zhang Z, Xie S. Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Composites Part A: Appl Sci Manuf, 38, 388 (2007). http://dx.doi. org/10.1016/j.compositesa.2006.03.007.   DOI   ScienceOn
12 Ashrafi B, Guan J, Mirjalili V, Hubert P, Simard B, Johnston A. Correlation between Young's modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper. Composites Part A: Appl Sci Manuf, 41, 1184 (2010). http://dx.doi.org/10.1016/j.compositesa. 2010.04.018.   DOI   ScienceOn
13 Giang TP, Young-Bin P, Shiren W, Zhiyong L, Ben W, Chuck Z, Percy F, Leslie K. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology, 19, 325705 (2008). http://dx.doi.org/10.1088/0957- 4484/19/32/325705.   DOI   ScienceOn
14 Kim HS. Processing and characterization of carbon nanotube mat/ epoxy composites. Met Mater Int, 17, 697 (2011). http://dx.doi. org/10.1007/s12540-011-1001-7.   DOI
15 Lashmore D, Brown J, Chaffee J, Resnicoff B, Antoinette P. US Patent, 20070036709 (2006).
16 Cheng Q, Bao J, Park J, Liang Z, Zhang C, Wang B. High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater, 19, 3219 (2009). http://dx.doi.org/10.1002/adfm.200900663.   DOI   ScienceOn
17 American Society for Testing and Materials. ASTM D257 data sheet, standard test methods for DC resistance or conductance of insulating materials. Available from: http://www.astm.org.
18 Parton H, Baets J, Lipnik P, Goderis B, Devaux J, Verpoest I. Prop erties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer, 46, 9871 (2005). http:// dx.doi.org/10.1016/j.polymer.2005.07.082.   DOI   ScienceOn