DOI QR코드

DOI QR Code

Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure

  • Noh, Ye Ji (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Han Sang (Department of Mechanical and Automotive Engineering, Gachon University) ;
  • Kim, Seong Yun (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
  • Received : 2012.07.30
  • Accepted : 2012.09.05
  • Published : 2012.10.31

Abstract

A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of $2.1{\Omega}$. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S $m^{-1}$, where the weight fraction of the CNT mat was 36.5%.

Keywords

Acknowledgement

Supported by : Korea Institute of Science and Technology (KIST)

References

  1. Whitten PG, Spinks GM, Wallace GG. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon, 43, 1891 (2005). http://dx.doi.org/10.1016/j.carbon. 2005.02.038.
  2. Cooper SM, Chuang HF, Cinke M, Cruden BA, Meyyappan M. Gas permeability of a buckypaper membrane. Nano Lett, 3, 189 (2003). http://dx.doi.org/10.1021/nl0259131.
  3. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 284, 1340 (1999). http://dx.doi.org/10.1126/science.284.5418.1340.
  4. Prasad D, Zhiling L, Satish N, Barrera EV. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology, 15, 379 (2004). http://dx.doi.org/10.1088/0957-4484/15/3/026.
  5. Knapp W, Schleussner D. Field-emission characteristics of carbon buckypaper. 21, 557 (2003). http://dx.doi.org/10.1116/1.1527598.
  6. Wang Z, Liang Z, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites A: Appl Sci Manuf, 35, 1225 (2004). http://dx.doi.org/10.1016/j.compositesa. 2003.09.029.
  7. Shiren W, Zhiyong L, Giang P, Young-Bin P, Ben W, Chuck Z, Leslie K, Percy F. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology, 18, 095708 (2007). http://dx.doi. org/10.1088/0957-4484/18/9/095708.
  8. Frizzell CJ, in het Panhuis M, Coutinho DH, Balkus KJ Jr., Minett AI, Blau WJ, Coleman JN. Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Phys Rev B, 72, 245420 (2005). http://dx.doi.org/10.1103/PhysRevB.72.245420.
  9. Coleman JN, Blau WJ, Dalton AB, Munoz E, Collins S, Kim BG, Razal J, Selvidge M, Vieiro G, Baughman RH. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett, 82, 1682 (2003). http://dx.doi.org/10.1063/1.1559421.
  10. Lahiff E, Leahy R, Coleman JN, Blau WJ. Physical properties of novel free-standing polymer-nanotube thin films. Carbon, 44, 1525 (2006). http://dx.doi.org/10.1016/j.carbon.2005.12.018.
  11. Song L, Zhang H, Zhang Z, Xie S. Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Composites Part A: Appl Sci Manuf, 38, 388 (2007). http://dx.doi. org/10.1016/j.compositesa.2006.03.007.
  12. Ashrafi B, Guan J, Mirjalili V, Hubert P, Simard B, Johnston A. Correlation between Young's modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper. Composites Part A: Appl Sci Manuf, 41, 1184 (2010). http://dx.doi.org/10.1016/j.compositesa. 2010.04.018.
  13. Giang TP, Young-Bin P, Shiren W, Zhiyong L, Ben W, Chuck Z, Percy F, Leslie K. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology, 19, 325705 (2008). http://dx.doi.org/10.1088/0957- 4484/19/32/325705.
  14. Kim HS. Processing and characterization of carbon nanotube mat/ epoxy composites. Met Mater Int, 17, 697 (2011). http://dx.doi. org/10.1007/s12540-011-1001-7.
  15. Lashmore D, Brown J, Chaffee J, Resnicoff B, Antoinette P. US Patent, 20070036709 (2006).
  16. Cheng Q, Bao J, Park J, Liang Z, Zhang C, Wang B. High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv Funct Mater, 19, 3219 (2009). http://dx.doi.org/10.1002/adfm.200900663.
  17. Parton H, Baets J, Lipnik P, Goderis B, Devaux J, Verpoest I. Prop erties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer, 46, 9871 (2005). http:// dx.doi.org/10.1016/j.polymer.2005.07.082.
  18. American Society for Testing and Materials. ASTM D257 data sheet, standard test methods for DC resistance or conductance of insulating materials. Available from: http://www.astm.org.

Cited by

  1. Novel Method of Evaluating the Purity of Multiwall Carbon Nanotubes Using Raman Spectroscopy vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/615915
  2. /Epoxy Composites vol.37, pp.4, 2013, https://doi.org/10.7317/pk.2013.37.4.449
  3. Carbon nanotube mat reinforced thermoplastic composites with a polymerizable, low-viscosity cyclic butylene terephthalate matrix vol.22, pp.11, 2014, https://doi.org/10.1007/s13233-014-2171-1
  4. Single-walled carbon nanotube networks in conductive composite materials pp.1364-5498, 2014, https://doi.org/10.1039/C4FD00087K
  5. A Review of the Recent Advances in Cyclic Butylene Terephthalate Technology and its Composites vol.42, pp.3, 2017, https://doi.org/10.1080/10408436.2016.1160820