• Title/Summary/Keyword: Compression Molding Method

Search Result 84, Processing Time 0.022 seconds

Investigation of Micro Cutting Characteristics for Tungsten-Carbide Green Part (초경 그린파트 마이크로 절삭가공 특성 분석)

  • Kim, G.H.;Jung, W.C.;Yoon, G.S.;Heo, Y.M.;Kwon, Y.S.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • Tungsten-carbide as typical difficult-to-cut material has excellent mechanical properties such as high thermal resistivity, mechanical strength and chemical durability. However, it is next to impossible for tungsten-carbide to be fabricated the needed parts by cutting process. In this study, for establishing the micro fabrication method of tungsten-carbide for micro injection or compression molding core, the investigation on micro cutting characteristics of tungsten-carbide green part which is made by powder injection molding process and easy to cut relatively was performed. For this, micro endmilling experiments of tungsten-carbide green part were performed according to various cutting conditions. Finally, the wear trend of micro endmill and the appearance of micro rib according to feed-rate and cutting depth per step were analyzed through SEM images of micro cutting feature and microscope images of micro tools.

Fabrication of Microlens Array by UV-molding (UV 성형을 통한 마이크로 렌즈 어레이의 제작)

  • 김석민;임지석;강신일;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.236-241
    • /
    • 2004
  • UV-molded microlens arrays with high replication quality were fabricated using a parametric design method. It is important to maximize the replication quality, because one can obtain the replicated micro-optical components with desired properties by accurate control of the shape. In the present study, nickel mold inserts for microlens arrays with lenses having diameters between $3\mu\textrm{m}$ and $230\mu\textrm{m}$ were fabricated by electroforming process. An UV-molding system was designed and constructed, a simple technique to avoid micro-air bubbles was first suggested, and the effects of the compression pressure and UV-curing dose on the replication quality of UV-molded microlens arrays with a diameter of $14\mu\textrm{m}$ were examined experimentally. Finally, geometrical and optical properties of the replicated microlens arrays were measured and analyzed.

THE LEVEL OF RESIDUAL MONOMER IN INJECTION MOLDED DENTURE BASE MATERIALS

  • Lee Hyeok-Jae;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.360-368
    • /
    • 2003
  • Statement of Problem: The residual monomer of denture base materials causes hypersensitivity on oral mucosa and intereferes with the mechanical properties of the cured resin. The amount of residual monomer is influenced by materials, curing cycle, processing method, and etc. Purpose: The aim of this study was to investigate the residual methyl methacrylate(MMA) content of injection molded denture base polymer, and to compare this with the self-cured resin and the conventional compression molded heat-cured resin. Materials and Methods: Disc shaped test specimens (50mm in diameter and 3mm thick) were prepared in a conventional flasking technique with gypsum molding. One autopolymerized denture base resins (Vertex Sc. Dentimex. Netherlands) and two heat-cured denture base resins (Vertex RS. Dentimex. Netherlands, Ivocap. Ivoclar Vivadent, USA) were used. The three types of specimens were processed according to the manufacturer's instruction. After polymerization, all specimens were stored in the dark at room temperature for 7 days. There were 10 specimens in each of the test groups. 3-mm twist drills were used to obtain the resin samples and 650mg of the drilled sample were collected for each estimation. Gas chromatography (Agillent 6890 Plus Gas Chromatograph, Agillent Co, USA) was used to determine the residual MMA content of 10 test specimens of each three types of polymer. Results: The residual monomer content of injection molded denture base resins was $1.057{\pm}0.141%$. The residual monomer content of injection molded denture base resins was higher than that of compression molded heat cured resin ($0.867{\pm}0.169%$). However, there was no statistical significant difference between two groups (p>0.01). The level of residual monomer in self cured resin($3.675{\pm}0.791$) was higher than those of injection molded and compression molded heat cured resins (p<0.01). Conclusion: With respect to ISO specification pass / fail test (2.2% mass fraction) of residual monomer, injection molding technique($1.057{\pm}0.141%$) is a clinically useful and safe technique in terms of residual monomer.

Development of UV-molding process to fabricate functional micro-optical components (기능성 마이크로 광 부품의 성형을 위한 UV 성형 공정 기술 개발)

  • Kim, Seok-Min;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1332-1336
    • /
    • 2003
  • An experimental method is presented to maximize the replication quality of UV-molded micro-optical components. It is important to maximize the replication quality, because one can obtain the replicated micro-optical components with desired properties by accurate control of the shape. In the present study, a simple technique to avoid micro-air bubbles was first suggested. The effects of the UV-curing dose and the compression pressure on the replication quality of UV-molded structure were examined experimentally. Finally, as a practical application of the process design method, microlens arrays with diameters between 8 ${\mu}m$ and 96 ${\mu}m$ were fabricated by the present method, and the replication quality and the optical properties of the replicated microlens were measured and analyzed.

  • PDF

Characteristic of DLC Thin Film Fabricated by FVAS Method on Tungsten Carbide (초경합금에 FVAS로 코팅한 DLC 박막의 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Tae-Gon;Lee, Ho-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.812-816
    • /
    • 2011
  • An optical lens is usually produced in the manner of high temperature compression molding with tungsten carbide alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coating the core surface. As main methods used in surface improvement technologies using thin film, DLC present high hardness, chemical stability, and outstanding durability of abrasion to be extensively applied in various industrial fields. In this study, the effect of DLC coating of a thin film by means of the FVAS (filtered vacuum arc source) analyzed the characteristics of thin film. Surface roughness before and after DLC coating was measured and the result showed that the surface roughness was improved after coating as compared to before coating. In conclusion, it was observed that DLC coating of the ultra hard alloy core surface for molding had an effect on improving the surface roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

Improved Electrical Conductivity of a Carbon Nanotube Mat Composite Prepared by In-Situ Polymerization and Compression Molding with Compression Pressure

  • Noh, Ye Ji;Kim, Han Sang;Kim, Seong Yun
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.243-247
    • /
    • 2012
  • A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of $2.1{\Omega}$. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S $m^{-1}$, where the weight fraction of the CNT mat was 36.5%.

실험계획법을 이용한 탄소섬유/페놀수지의 강화 cycle연구

  • Ha, Heon-Seung;Lee, Jin-Yong;Jo, Dong-Hwan;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.514-520
    • /
    • 1993
  • In this paper the cure cycle of carbon fiber/phenolic resin was investigated by the Taguchi Method in an experimental design. Experiments were systematically performed using $L_{18}(2^1 \times 3_7)$ orthorgonal array table of the experimental design. In the experimental design, eight compression molding parameters (heating rate, pressing temperature, pressing rate, molding pressure, curing temperature, dwell time at curing temperature, cooling rate and degassing) were considered and the effects of the parameters on the flexural strength and the apparent porosity of carbon fiber/phenolic composites were investigated. The analysis of variance for the experimental results indicated that molding pressure and curing temperature are the most significant parmeters in the flexural strength and the apparent porosity of carbon fiber/phenolic resin composites, respectively.

  • PDF

Multi-scale Process-structural Analysis Considering the Stochastic Distribution of Material Properties in the Microstructure (미소 구조 물성의 확률적 분포를 고려한 하이브리드 성형 공정 연계 멀티스케일 구조 해석)

  • Jang, Kyung Suk;Kim, Tae Ri;Kim, Jeong Hwan;Yun, Gun Jin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2022
  • This paper proposes a multiscale process-structural analysis methodology and applies to a battery housing part made of the short fiber-reinforced and fabric-reinforced composite layers. In particular, uncertainties of the material properties within the microscale representative volume element (RVE) were considered. The random spatial distribution of matrix properties in the microscale RVE was realized by the Karhunen-Loeve Expansion (KLE) method. Then, effective properties of the RVE reflecting on spatially varying matrix properties were obtained by the computational homogenization and mapped to a macroscale FE (finite element) model. Morever, through the hybrid process simulation, a FE (finite element) model mapping residual stress and fiber orientation from compression molding simulation is combined with one mapping fiber orientation from the draping process simulation. The proposed method is expected to rigorously evaluate the design requirements of the battery housing part and composite materials having various material configurations.

ABRASION RESISTANCE OF DENTURE BASE RESIN INCLUDING VINYLOLIGOSILSESQUIOXANE (Vinyloligosilsesquioxane 함유 의치상용 아크릴릭 레진의 마모 저항성)

  • Park Ran;Shim June-Sung;Han Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.626-639
    • /
    • 2003
  • Statement of problem : Recently, in attempts to reinforce the acrylic resin and to reduce the polymerization shrinkage, it has been reported that adding vinyloligo-silsesquioxane (vinyl-POSS) to PMMA significantly compensates for polymerization shrinkage and somewhat increases the fracture resistance. Purpose : There haven't been any studies on abrasion that can affect the adaptation of the denture in long-term use. In this study abrasion resistance was compared between acrylic resin with vinyl-POSS and commercialized acrylic resin for denture base. In addition, the difference in abrasion resistance according to molding methods was compared. Material and method : Using PaladentR 20 including vinyl-POSS. PaladentR 20, Lucitone 199R, SR IvocapR, denture bases were fabricated using compression molding technique and continuous-pressure injection technique. Surface hardness and abrasion were measured for each group, and the worn surfaces were observed under a scanning electron microscope. Results : 1. When surface hardness was measured for each material and molding technique, there was no statistically significant difference among the materials. (p<0.05) 2. When same denture base material and molding technique were used, the abrasion due to toothpaste solution was 5 times as severe as the abrasion due to soap solution. 3, When toothpaste solution was used, the abrasion decreased in the order of PaladentR20, PaladentR 20 including vinyl-POSS, SR IvocapR, and Lucitone 199R. However statistically significant difference was seen only among PaladentR 20, SR IvocapR, and Lucitone 199R. (p<0.05). 4. When soap solution was used, the abrasion was more severe in PaladentR 20 and including vinyl-POSS PaladentR 20 groups than in SR IvocapR and Lucitone 199R groups. (p<0.05). Conclusion : Addition of vinyl-POSS doesn't improve the abrasion resistance, and the abrasion resistance was similar to those of existing materials. Additional studies under different conditions are needed. For clinical application of vinyl-POSS, further investigations with different requirements and conditions are necessary.

Effect of Fiber Orientation on the Mechanical Properties of Long Fiber Reinforced Composites (장섬유강화 복합재료의 섬유 배향특성이 기계적 특성에 미치는 영향)

  • Huh, Mongyoung;Lee, Haksung
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.403-407
    • /
    • 2019
  • Long-fiber-reinforced composites have the advantages of cost-competitiveness and high degree of freedom of molding compared to continuous-fiber-reinforced composites. On the other hand, it is difficult to ensure uniform characteristics due to the randomly distributed fiber orientation incurred from the process of manufacturing intermediate materials. In this study, the effect of the directionality of LFPS (Long Fiber Prepreg Sheet) materials on the mechanical properties was analyzed. The eddy current measurement method was used to analyze fiber orientations, and tensile and compression tests on LFPS materials were performed according to ASTM standards. In addition, the test results and theoretical values of LFPS materials were verified using the ROM (rule-of-mixtures) theory. These results confirmed the effect of fiber orientation on mechanical properties of discontinuous-fiber-reinforced composites.