• Title/Summary/Keyword: Compressible

Search Result 1,150, Processing Time 0.022 seconds

Compressible Boundary Layer Stability Analysis With Parabolized Stability Equations

  • Bing, Gao;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.110-119
    • /
    • 2006
  • An accurate and cost efficient method PSE is used for the stability analysis of 2D or 3D compressible boundary layers. A highly accurate finite difference PSE code has been developed at a general curvilinear coordinate system using an implicit marching procedure to deal with a broad range of transition predictions problems. Evolution of disturbances in compressible flat plate boundary layers are studied for free-stream Mach numbers ranging from 0 to 1.5. The effect of mean-flow nonparallelism is found to be weak on two dimensional waves and strong on three dimensional waves. The maximum amplification rate increases monotonically with Mach number. The present PSE solutions are compared with previous numerical investigations and experimental results and are found to be in good agreement.

  • PDF

Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid (압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

Two-Dimensional Adaptive Mesh Generation Algorithm and its Application with Higher-Order Compressible Flow Solver

  • Phongthanapanich, Sutthisak;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2190-2203
    • /
    • 2004
  • A combined procedure for two-dimensional Delaunay mesh generation algorithm and an adaptive remeshing technique with higher-order compressible flow solver is presented. A pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference splitting scheme with a modified multidimensional dissipation for high-speed compressible flow analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions such as the spurious bump of the carbuncle phenomenon observed from the bow shock of the flow over a blunt body and the oscillation in the odd-even grid perturbation in a straight duct for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. The performance of the combined procedure is evaluated on unstructured triangular meshes by solving several steady-state and transient high-speed compressible flow problems.

Nonlinear Waves of a Two-Layer Compressible Fluid over a Bump

  • Kim H. Y.;Choi J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.113-119
    • /
    • 2000
  • Two-dimensional steady flow of two immiscible, compressible fluids are considered when the temperature of each layer is constant. Both upper and lower fluids are bounded by two horizontal rigid boundaries with symmetric obstruction of compact support at the tourer boundary. By using asymptotic method, we derive the forced K-dV equation governing interfacial wave. Various solutions and numerical results are presented.

  • PDF

LARGE EDDY SIMULATION OF THE COMPRESSIBLE FLOW OVER A CAVITY WITH HIGH ASPECT RATIO

  • Oh Keon Je
    • Journal of computational fluids engineering
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Large eddy simulation is used to investigate the compressible flow over a cavity with high aspect ratio. The sub-grid scale stresses are modeled using the dynamic model. The compressible Navier-Stokes equations are solved with the sixth order accurate compact finite difference scheme in the space and the 4th order Runge-Kutta scheme in the time. The buffer Bone techniques are used for non-reflecting boundary conditions. The results show the shear layer oscillation over the cavity. The votical disturbances, the roll-up of vorticity, and impingement and scattering of vorticity at the downstream cavity edge can be seen in the shear layer. Several peaks for the resonant frequencies are found in the spectra of the vertical velocity at the center-line. The most energetic Peak near the downstream edge is different from that at the center part of the cavity The pressure has its minimum value in the vortex core inside the cavity, and becomes very high at the downstream face of the cavity. The variation of the model coefficient predicted by the dynamic model is quite large between 0 and 0.3. The model coefficient increases in the stream-wise evolution of the shear layer and sharply decreases near the wall due to the wall effect.

LARGE EDDY SIMULATION OF THE COMPRESSIBLE FLOW OVER A OPEN CAVITY (큰에디모사기법을 이용한 공동 주위의 압축성유동 해석)

  • 오건제
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2003
  • Large eddy simulation is used to investigate the compressible flow over a open cavity, The sub-grid scale stresses are modeled using the dynamic model. The compressible Navier-Stokes equations are solved with the sixth order accurate compact finite difference scheme in the space and the 4th order Runge-Kutta scheme in the time. The results show a typical flow pattern of the shear layer mode of oscillation over the cavity. The votical disturbances, the roll-up of vorticity, and impingement and scattering of vorticity at the downstream cavity edge can be seen in the shear layer. Predicted acoustic resonant frequency is in good agreement with that of the empirical formula. The mean flow streamlines are nearly horizontal along the mouth of the cavity. The pressure has its minimum value in the vortex core inside the cavity.

Study on Analysis of Gravity Currents by the Finite Difference Boltzmann Method using Two-dimensional Compressible fluid Model (차분격자볼츠만법의 압축성 유체모델을 도입한 중력류의 흐름현상에 관한 연구)

  • 손유식;김원철;강호근
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.15-20
    • /
    • 2002
  • In this research, the finite difference lattice Boltzmann method(FDLBM) is used to analyze gravity currents in the lock exchange configuration that occur in many natural and man-made situations. At a lock those are seen when a gate is suddenly opened, and, in the atmosphere, when the thunderstorm outflows make a cold front. At estuaries in the ocean, the phenomenon is found between fresh water from a river and salt water in the sea. Since such interesting phenomena were recognized, pioneers have challenged to make them clear by conducing both experiments and analysis. Most of them were about the currents of liquid or Boussinesq fluids, which are assumed as incompressible. Otherwise, the difference in density of two fluids is small. The finite difference lattice Boltzmann method has been a powerful tool to simulate the flow of compressible fluids. Also, numerical predictions using FDLBM to clarify the gravity currents of compressible fluids exhibit all features, but typically observed in experimental flows near the gravity current head, including the lobe-and-cleft structure at the leading edge.

Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim Chang-Seong;Kim Jong-Am;No O Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF