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LARGE EDDY SIMULATION OF THE COMPRESSIBLE
FLOW OVER A CAVITY WITH HIGH ASPECT RATIO

Keon Je Oh’

Large eddy simulation is used to investigate the compressible flow over a cavity with high
aspect ratio. The sub-grid scale stresses are modeled using the dynamic model. The compressible
Navier-Stokes equations are solved with the sixth order accurate compact finite difference scheme in
the space and the 4th order Runge-Kutta scheme in the time. The buffer zone techniques are used
for non-reflecting boundary conditions. The results show the shear layer oscillation over the cavity.
The votical disturbances, the roll~up of vorticity, and impingement and scattering of vorticity at the
downstream cavity edge can be seen in the shear layer. Several peaks for the resonant frequencies
are found in the spectra of the vertical velocity at the center-line. The most energetic peak near the
downstream edge is different from that at the center part of the cavity. The pressure has its
minimum value in the vortex core inside the cavity, and becomes very high at the downstream face
of the cavity. The variation of the model coefficient predicted by the dynamic model is quite large
between 0 and 0.3. The model coefficient increases in the stream-wise evolution of the shear layer
and sharply decreases near the wall due to the wall effect.
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acoustic waves upstream, and their conversion
to votical fluctuations at the cavity leading
edge. This feedback process is  first
investigated by Rossiter{1]. His semi-empirical

It is of a great practical importance to study formula to predict the resonant frequencies is

1. Introduction

the flows over the open cavity. The acoustic widely used. The resonance phenomena over
noise emits by the flow over the cavity. The the cavity are influenced by the turbulence in
emission of the noise is due to the resonant  the flow. The spreading is more rapid by the
oscillations in the flow. Cavity resonance is  £éneration of Reynolds stresses and other

thought to arise from a feedback loop in nonlinear interactions in the turbulence The
the flow over the cavity; shear layer  amplification of disturbances is attenuated by
instability, the impingement of the vortices at  the dissipation mechanism in turbulent flows.
the downstream edge, the transmission of The resonance phenomenon in turbulent flows
is very complex and a full modeling of the

* 200349 79 214 A= process is impossible. Numerical simulations of
*% 3] 9, Department of Mechanical Engineering, the compressible flow over the cavity can give
Kyungnam University, Masan 631-701, Korea better understanding of the resonance

phenomenon.
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Recently, Colonius et alf2] provided
2-dimensional DNS (Direct Numerical
Simulation) results on the cavity flow. They
assumed that the modes are
two-dimensional and tried DNS for unstable

resonant

laminar flows without any turbulence model.
Their showed an
transition from a shear

interesting
mode of

results
layer
oscillation to a wake mode of oscillation. The
results from the computation were in good
agreement with experimental data. The
acoustic field was well represented by the
DNS simulations. However, this case is only
for the two-dimensional flow and cannot be
applied to turbulent and three dimensional
cavity flows. DNS of the 3-dimensional cavity
flow is limited to low Reynolds number and
would be quite expensive because it needs
much computing time. Another simulation
technique of turbulent flows 'is the LES (Large
Eddy Simulation). The large scale is resolved
in the computation while the small scales are
modeled with a simple model. LES is based on
the fact that the
important and they do not contain much

small scales are not
energy. LES has a great advantage that it can
be applied to a high Reynolds number flow
and it can simulate the unsteady turbulent
flow with less computing time than DNS.

The author investigated the compressible
flow over a cavity using large eddy
simulation[3,4]. The results showed a typical
shear layer oscillation of the cavity flow. In
the present study, the LES method is used to
calculate the compressible flows over an open
and somewhat long cavity with high aspect
ratio. The dynamic model is used for modeling
the sub-grid scale stresses. The resonant
frequencies over the cavity are predicted from
the calculation and compared with those of the
empirical relation. The time dependent flow
field and mean flow quantities are investigated
inside and over the cavity.

2. Governing equations

The governing equations for compressible
flows over the cavity as shown in Fig. 1 are

the  continuity, momentum, and energy
equations given by
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Fig. 1 Schematic diagram of cavity configu-
ration and computational domain

where 9 is the Newtonian stress tensor, E is

the total energy per unit mass(internal and

kinetic), p is the pressure, and 7 is the
temperature:
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The flow variables are filtered in the space
for large eddy simulations.

f(x Xy ,x3) =

3
J}sz xj3 ig[lcl.(xi:x{) f(x/,xé,xé)dxl/ dxédxé (8)

G is a spatial filter which is chosen as the

top hat filter in the present study.

NE . /
Gi(x; wx;)=1/4A; of [x; ~x; <4, /2
=0 otherwise )

A; is the filter width in the i-th direction. A

Favre filtered variable for compressible flows
is defined as

f:

v IR

10

The Favre filtered governing equations are
given by

— o0
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The sub-grid scale stress tensor can be

denoted by %7, and the sub-grid scale term in
the energy equation can be rewritten with the
sub-grid scale heat flux as described below.

(pE + p)uj ~(PE + B)i , ={(pe+ pluj~(Pe+ D) }

1 1 -
+ {E p”i“i”j - 5 puju; uj } 17)

Qj =(pet pyu;—(pe+p)i  =phu ;- phi;

=pCPTuj—pCPTuj (18)

The last term in the equation (17) can be
approximated by[5]

1 1 ~ e ~
Ep“i"i“j - Ep”i“i uj —pKuj —pKuj _Tijui (19)

Also, the sub-grid scale contributions in the
viscous the heat
fluxes, and the sub-grid contributions in the
kinetic energy are expected to be small and
the followings are assumed.

terms, non-linearities in
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The sub-grid scale stresses and heat flux
can be expressed by the eddy viscosity model

e g
83 == 2PV (S =3 S4%) @n

1
Tl-j—g'l'kk ij=

pvCp oT
Qj:__.’_ii__ (22)
Py, 6xj

where Si s the Favred filtered strain rate

tensor,

~ 1 ou; Ouj

Sy =—(—F+—>) (23)
Y2 ox ;o

and P is the turbulent Prandtl number

which is taken as 09[6].The isotropic part of

the sub-grid tensor Tk is

assumed to be small and neglected in the

scale stress
present study. The eddy viscosity is given by
the sub-grid scale characteristics length and
velocity:

1/2
i) (24)

2.2 .5
vy =C A" (28,5,

where A is defined as 4% = (4, 4,4;)%°.
The model constant C is fixed during the
calculation in the Smagorinsky model. The
Smagorinsky constant is known to have a
value between 0.1 and 0.24[6].

The weakness of the Smagorinsky model is
that the model coefficient must be given by
the optimization in computation and the

optimal value cannot he general for the

turbulent flows. Germano et all7] proposed a

sub-grid scale model to overcome this
deficiency. They developed the concept to
determine the model coefficient using the

filtering of the flow variable at two different
In this model, the model coefficient C
is "dynamically” determined in the space and
in the time by the resolved flow wvariables.
Moin et all8] extend this concept to the
compressible flow. We use the dynamic model

scales.

T

for %. The sub-grid scale stress % is

written as:

Py P

Ty-: ﬂlluj—ﬁrllﬁ‘j: Wiuj— (25)

5
The dynamic model uses a test filter with a
larger filter width (=KA) than the grid filter

(k>1) The ratio of the two filter widths is
chosen as 2[7]. The consecutive application of

these two filters yields the test-filtered
stresses
Uy —— DU pU
* 7 Vi J
Ty = PUU - = = Ul - = (26)
P P

The Leonard stresses L

¥ can be expressed
»

in terms of Ly and % .

(27)

The test-filtered sub-grid scale stresses can
be modeled using the Smagorinsky model with
the same model coefficient and the test filtered
variables.

+ 1 % = 2 = = 1=
‘rl-j—grkkz—ZCzp(kA) 5163w @9
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The sub-grid scale stresses are directly
filtered using the test filter as follows.

A s a2 |§ 18- S N9
TSy PRy ki
Combining Eq. (27)-(29) yields
1 2
with
__ mm
L= pag; - —=2 31
P
My =p()? 1315, - )
y kk ij
—/_?A IS I(S 0;::) (32)

3kklj

We can use this relation to determine C
since all termms except C can be computed
from the resolved variables. Another procedure
is needed to obtain C because there are six
equations to be solved for one constant C. The
least square error method is employed to
calculate C in the present studyl9], and C can
be determined as

L-jM--

1
C2:____l_ll. (33)
2MijMij

The numerator and denominator of the
equation need volume averaging in the space
because they can become zero at some grid
points. In the calculation, the

numerator and the denominator of the equation

present

are averaged in the z-direction.

3. Numerical method and boundary
conditions

The numerical method is very similar to the
methods et all2]. The
equations  are

used by Colonius
compressible  Navier-Stokes
solved with the sixth order accurate compact
finite difference scheme[10] in the space and
the 4th order Runge-Kutta scheme in the time.
To minimize the aliasing error, the convection
terms are rewritten in the skew symmetric

form[11], i.e.,

opufi; | opuE; opE; 4
8L g D wm Ty e
&, 2 & & I o

J J J J

At inflow, outflow, and normal boundaries,
the one dimensional boundary conditions of
Poinsot and Lele[12] are used and the buffer
regions with artificial damping terms are
placed(13]. In the buffer zone, the numerical
solutions are forced to a certain target solution
and the acoustic wave is allowed to pass
freely with minimal reflection. At the wall,
velocity and
isothermal condition for the temperature are
enforced. A periodic boundary condition is used
in the span-wise direction.

non-slip conditions for the

4. Calculation

The origin of the coordinate system is
located at the upstream corner of the cavity as
shown in Fig. 1. The inflow is located at
x/D=-5406 (D: cavity depth) upstream of the
cavity and the outflow is located at
x/D=16945 downstream of the cavity. The
vertical extent of the domain is 6.98D over the
cavity. Computational domain includes the
buffer zone of 1.25D, 2.0D, and 20D at the
inflow, outflow, and normal boundary,
respectively. Calculations are performed on a

grid system with two blocks. The number of
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grid point is (418, 95, 30) over the cavity and
(180, 35, 30) inside the cavity
z direction, respectively. The grid is clustered
near all the walls. Analytical error function
mappings are used for the grid clustering.

in the X, y, and

The initial velocity profiles on the wall and
over the cavity are given by the Blasius
boundary layer solutions.
assumed inside the cavity. To initiate three

No initial motion is

dimensional turbulent flow motions, a uniform
random perturbation is added to the span-wise
velocity at all grid points.

The equations are made to be dimensionless
with the cavity depth(D), ambient speed of
sound(C,), and ambient density. The following
parameters may be independent variables in
the simulations: the cavity length and width
relative to the cavity depth (L/D, W/D), the
initial boundary layer thickness at the cavity

leading edge relative to the cavity depth (J
/D), the Mach number of the free stream
(M=UyC,), and the Reynolds number based on
the ambient speed of sound and the cavity
depth (Re). Calculation is made for the case
of L/D=8, W/D=80, &/D=02967, M=0.5,
Re=1500. The Reynolds number is low in the
present calculation for numerical stability
because we use high order numerical scheme.
Calculation is started with randomly perturbed
initial velocity field. The time increment is
chosen as At Cy/D=0.0079 and the calculation
is advanced up to 16000 time steps.

Fig. 2 shows the time traces of the normal
velocity averaged in the span-wise direction at
y=0. The figure confirms the oscillatory motion
over the cavity. The velocity variations are
quite large in the latter part of the cavity.
Oscillatory motion feature at x/L=09 is
different from those at other two locations.
This indicates that the flow around the
downstream comer of the cavity becomes
more complex by impingement of the shear

layer.

x/L=0.9

x/L=0.5

. . )
50 100

Fig. 2 Time traces of the normal velocity
averaged in the spanwise direction at

v=0.
To investigate the oscillatory motion in
detail, the
averaged in the span-wise direction are shown

at different times in Fig. 3. Colonius et al[2]
showed that there are two types of flow mode

instantaneous vorticity contours

over the cavity, i.e., the shear layer mode and
the wake mode. The shear layer mode is
characterized by the feedback  process
described in the introduction. The wake mode
instead by a
vortex shedding inside the cavity.

is characterized large-scale

Fig. 3 shows a typical flow pattern of the
shear layer mode of oscillation. The votical
disturbances are clear in the shear layer along
the center line (y=0) over the cavity. The
roll-up of vorticity in the shear layer and
impingement and scattering at the downstream
cavity edge can be seen. The flow inside
cavity is nearly same at different times and
does not show a large-scale vortex shedding
which implies the wake mode. The steadiness
of the vortex in the cavity indicates that the
interaction of the flow inside the cavity with
the shear layer is not much.
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Fig. 3 Instantaneous vorticity contours
averaged in the spanwise direction
at different times.

Fig.4 shows the spectrum of normal velocity
at the center-line(y=0) for the two different
locations, x/L=05 and 0.9. As shown in Fig.3,
roll-up of the vorticity appears around x/L=0.5
and the vorticity eddies interacts with the
downstream corner of the cavity with
impingement and scattering around x/L=0.9.
Similar distinct peaks can be seen in the
spectra, but the most energetic peaks are
different between x/L=05 and 0.0. The
primary peak is found at 0718 for x/L=05,
while it is found at 0.154 for x/L=0.9. This
indicates that the flow around the downstrean
corner is dominated by a lower frequency
which comes from the flow interaction with
the wall of the cavity. In the previous
calculations for a cavity with L/D=4[34], the
results showed that only one peak appeared in
the spectrum and the peak value was not
different between the center and latter part of
indicates that the flow
oscillation over the long cavity becomes more
complex by the flow interaction around the

the cavity. This

downstream edge of the cavity. The flow
oscillations over the rectangular cavity show
discrete frequencies by cavity resonance.
Cavity resonance is thought to arise from the
coupling between shear layer instability and
acoustic feedback[1,14].

the following formula to predict the resonant

Rossiter [1] presented

frequencies for compressible flows over the

cavity.
Sty=Lk_n=a g, (35)
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Fig. 4 Spectra of the normal velocity
averaged in the spanwise direction
at y=0.

St

where n is the Strouhal number

corresponding to the n-th mode frequency f, ",

L is the cavity length, U, is the free stream
velocity, M is the Mach number, k is the
average phase speed of the votical
disturbances, and @ is an empirical constant.
taken as 057 and 025,
respectively [1,14). In Fig. 4, distinct peaks in
the spectra compared with the
predictions from the Rossiter formula. Two
peaks in the spetra can be detected around the
first and the second mode of the Rossiter

k and @ are

can be

formula, ie, St =0319 anq St,=0.74
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Fig. 5 Time averaged mean streamlines and
the pressure coefficient contours
((a)streamlines, (b)pressure coefficient
(dashed negative values))

Fig. 5 shows the time
streamlines and the

averaged mean
pressure . coefficient
distribution. The mean flow streamlines in the
shear layer over the cavity are nearly
horizontal along the mouth of the cavity. Flow
re-circulation is induced inside the cavity.
There is a strong stationary vortex within the
cavity, which is centered in the latter part of
the cavity. The pressure coefficient variation is
not quite large except in the region of the
latter part of the cavity. The pressure becomes
very low in the center of the re-circulation
region. The low pressure is due to the vortical
swirling motion. It is noted that the pressure
is very high at the downstream face of the
cavity. A sudden increase of the pressure is
associated with  the impingement and
interaction of the vortices with the dowastream
wall of the cavity. In the cavity flow
calculations for 1/D=4[3 4], the pressure on the
downstream face was not so high, and it can
be seen that the flow interaction at the
downstream corner becomes more strong for

the present case of 1/D=8.
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Fig. 6 Time averaged model coefficient
distributions at different streamwise
positions.

We investigate the variation of the time
averaged  model
stream-wise locations in Fig. 6. It is noted
that the coefficient is known as 0.1-0.24 in the
Smagorinsky model. The wvariation of the
model coefficient predicted by the dynamic

coefficient at  several

model is quite large between 0 and 0.3. These
results point to a deficiency of the
Smagorinsky model with a fixed coefficient.
The model coefficient
stream-wise evolution of the shear layer and
becomes larger in the latter part of the cavity.
However, the value of the model coefficient

increases in the

appears to be independent of the stream-wise
location in the free stream over the shear
layer. The model coefficient sharply decreases
near the wall due to the wall effect.

5. Conclusions

In the present study, the LES method with
the dynamic model is applied to calculate the
compressible flow over an open and long
cavity. The results can show the
characteristics of the shear layer oscillation
over the cavity. The spectra of the vertical
velocity at the

distinct peaks for the resonant frequencies.

center-line show several
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The most energetic peak near the downstream
edge is different from that at the center part.
Two peaks in the spetra can be detected
around the first and the second mode of the
pressure has its

Rossiter formula. The

minimum  value in the center of the
re-circulation region. A sharp increase of the
pressure is seen at the downstream face,
which is due to the flow interaction with the
downstream wall. The value of the model
coefficient varies quite large between 0.0 and
0.3. This deficiency of the

Smagorinsky model with a fixed model

indicates a

coefficient.
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