• Title/Summary/Keyword: Compound Aircraft

Search Result 27, Processing Time 0.023 seconds

A Study on the Autofrettage Analysis in Single and Compound Cylinders (단일 및 복합실린더에서 자긴가공 해석에 관한 연구)

  • Shim, Woo-Sung;Kim, Jae-Hoon;Lee, Young-Shin;Cha, Ki-Up;Hong, Suk-Kyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.7-15
    • /
    • 2008
  • In manufacturing aircraft, safety and lightness of structure are important factors. Utilizing autofrettage technique, these benefits can be obtained. This technique is most frequently applied to a single cylinder. However, the Bauschinger effect reduces the benefits of autofrettage process Therefore, there is increasing interest in the use of compound cylinder that combine shrink fit and autofrettage. In this paper, single and compound cylinders that has same geometry were considered. It was found that compound cylinder which was autofrettaged has lower tangential hoop stress and plastic strain than single cylinder at bore. This means a reduction in the impact of the Bauschinger effect after shrink-fitting which produces the beneficial bore hoop stress.

Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV (중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계)

  • Lee, Jonghoon;Hwang, Jaihyuk;Yang, Jiyoun;Joo, Yonghwi;Bae, Jaesung;Kwon, Junyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.

An Exploratory Study on the Speed Limit of Compound Gyroplane(1) : Aerodynamic Analysis of Rotor and Airframe (복합 자이로플레인의 한계 속도에 대한 탐색연구(1) : 로터와 기체의 공력해석)

  • Shin, Byung-joon;Kim, Hak-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.971-977
    • /
    • 2015
  • A numerical analysis for the performance of compound gyroplane in forward flight was performed. TSM(Transient Simulation Method) was used to analyze the performance of autorotating rotor. CFD was conducted for the fuselages to recognize the variation of aerodynamic performance according to flight speed. At given conditions; airspeed, shaft angle and collective pitch, the quasi-static states of autorotation were determined and the variation of rotor performance was observed. Performance analysis results showed that the effect of aerodynamic characteristics in accordance with the shape of fuselage is so important that the streamlined fuselage is essential to fly fast. Forward flight speed limit is dependent on the autorotation performance of rotor.

Flying-wing Type Compound Drone Design and Mission Accuracy Analysis (전익기형 복합드론의 설계 및 임무 정확도 연구)

  • Sung, Dong-gyu;Koh, Eun-hak;Kim, Ju-chan;Nam, Yong-hyeon;Lee, Jeong-ho;Lee, Jae-seung;Lee, Chan-bin;Jeon, Yeong-bae;Choi, Cheol-kyun;Lee, Jae woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.122-128
    • /
    • 2018
  • A compound drone that combines a fixed wing and a rotary wing is an aircraft that can take off and landing vertically, and can increase flight time and fly faster with fixed wings. The compound drones are divided into many types depending on the method of adding the thrust vectoring or the lift fan and the position of the rotor. In this study, we designed and fabricated a composite drone with four V-TOL motors in a fixed-wing, and assigned missions to the aviation body, hence judged mission accuracy using the actual flight test. The design process and the mission evaluation process employed in this study can be utilized on the development of various unmanned aerial vehicle.

EPDM Compounds for Electric Insulator (전기 절연용 EPDM Compounds)

  • Kim, In-H.;Hwang, S.H.;Kim, Jin-K.
    • Elastomers and Composites
    • /
    • v.34 no.5
    • /
    • pp.407-413
    • /
    • 1999
  • Non-ceramic composite insulator has been interested in the power industry because of its good characteristics in mechanical properties, mass product and design availability. Also it is lighter, and less unexplosive, compared to a ceramic insulator. Especially EPDM rubber composite insulator can be used for long-term in contaminated environments because of its hydrophobicity. This paper showed the rheological properties, the electrical properties, and contact angles to check the hydrophobicity and the recoverability of the EPDM compounds. Also, we investigated surface morphology of the compound by SEM.

  • PDF

A study on the development for an air transportation cultural index (항공교통문화지수 개발에 관한 연구)

  • Lee, K.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.3
    • /
    • pp.61-72
    • /
    • 2005
  • The main purpose of this study is to develop air transportation cultural index which is able to estimate the level of them. Generally Speaking, air transportation cultural, a compound word of 'air transportation' and 'culture', is a substantial entity consisting knowledge, art, morality, legality, cultivation, customs, and etc, which comes from aircraft operation sector, airport operation/management sector and user sector. They are classified in a primary scope, as aircraft operation sector relating to flight operation, airport operation/management sector and user sector. The research and analysis were taken approximately 4 months, from June 2004 to October 2004. To evaluate the index, the detailed item for three categories were chosen and quantified. The grades for each items were induced from calculation formula for air transportation cultural index by applying weight values. The final grade of Korea's air transportation cultural index recorded 63.19 points.

  • PDF

Synthetic Overview on the Dispute about Tiltrotor Technology and Flight Safety (틸트로터 비행체 개념에 대한 기술적 논란 및 비행안전성 논란 분석)

  • Ahn, Oh-Sung;Kim, Jai-Moo
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.254-262
    • /
    • 2008
  • Several decades have passed since tiltrotor technology became a hot issue of debates between aircraft majors, policy maker and mass-media. Although most of those subjects have been officially probed or answered in objective way, biased articles or argues related with the adequacy of this technology still prevail in the way of tilt-rotor development programs, which are totally irrelevant and out-dated. This paper aims to help understanding on those issues in technically balanced manner and the cases of flight test mishaps.

  • PDF

Elevation of Properties of Al-Nb-Ar alloys Fabricated by Mechanical Alloying Metho (기계적합금화법을 이용한 고온 고강도 Al-Nb-Zr 합금 제조 및 특성 평가)

  • Kwon, Dae-Hwan;Ahn, In-Shup;Kim, Sang-Shik;Lee, Kwang-Min;Park, Min-Woo
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.499-504
    • /
    • 2000
  • Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on Ti, Zr, V, Nb and Ta for use aircraft structure materials in an elevated environment. The effect of Zr additions on the formation behaviour of Al-Nb alloy was investigated. Al-1.3at.%(Nb+Zr) alloys with different Nb to Zr atomic 1:3, 1:1 and 3:1 were prepared by mechanical alloying(MA). The morphological changes and microstructural evolution of Al-Nb-Zr powders during MA were investigated by SEM, XRD and TEM. The intermetallic compound phase of $Nb_2Al\; and\; Al_3Zr_4$ was identified by X-ray diffraction. The intemetallic compound of $Al_3Zr,\; Al_3Nb$ and $Al_3Zr_4$ were formed by heat treatment for 1 hour at $500^{\circ}C$. The size of intermetallic compounds observed by TEM were approximately below 100nm, when they were heat treated after mechanically alloying for 30 hours.

  • PDF

A study of Pulse EMM for Invar alloy (펄스 전압을 이용한 인바 합금의 미세 전해가공)

  • 김원묵;백승엽;이은상;탁용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.560-563
    • /
    • 2004
  • Invar is a compound metal of Fe-Ni system and contain 36% Ni. The most distinction characteristic of Invar is the coefficient of thermal expansion is 1.0 10$^{-6}$ /$^{\circ}C$. That is a tenth of general steel material. This low thermal expansion characteristic of Invar is applied to the missile, aircraft, monitor CRT and frontier display's shadow mask such as FED and OLED. The usage of the Invar shadow mask for display is increasing due to the requirement of larger size and flatness monitor. The Invar shadow mask is machined by two ways electro-forming and laser now. However the electro-forming takes a too long time and the laser machining is accompanied with Burr. In this study, PEMM(pulse electrochemical micro machining) is conducted to machine the micro hole to the Invar and 80${\mu}{\textrm}{m}$ hole was machined.

  • PDF

Review of Reaction Drive Rotor System Sizing Methodology (반작용 구동로터 시스템의 사이징 방법론에 대한 고찰)

  • Ali, Freshipali Rasheeth;Jeon, Kwon-Su;Lee, Jae-Woo
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.9-13
    • /
    • 2016
  • Reaction drive rotor system is capable of providing hover and low speed capabilities to different aircraft concepts such as stopped rotor wing, canard rotor wing, compound gyroplane etc. Existing sizing and analysis tools for shaft drive rotor system cannot be applied directly to this system. The available methodologies to size this system were reviewed. Power available calculation procedure and factors affects it were addressed prior to sizing process. Various design issues of this system due to interrelationship of internal gas flow dynamics and rotor external aerodynamics was discussed. Finally, a modification that is required in existing sizing methodologies was identified and combined approach in sizing process to consider the interrelationship among engine, rotor and blade duct was introduced.

  • PDF