• Title/Summary/Keyword: Composites materials

Search Result 4,830, Processing Time 0.035 seconds

Studies on Morphologies and Mechanical Properties of Multi-walled Carbon Nanotubes/Epoxy Matrix Composites

  • Seo, Min-Kang;Byun, Joon-Hyung;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1237-1240
    • /
    • 2010
  • The mechanical properties of multiwalled carbon nanotubes (MWNTs)-reinforced epoxy matrix composites with different weight percentages of MWNTs have been investigated. Also, the morphologies and failure behaviors of the composites after mechanical tests are studied by SEM and TEM analyses. As a result, the addition of MWNTs into the epoxy matrix has a remarkable effect on the mechanical properties. And the fracture surfaces of MWNTs/epoxy composites after flexural strength tests show different failure mechanisms for the composites under different nanotube contents. Also, a chemical functionalization of MWNTs can be a useful tool to improve the dispersion of the nanotubes in an epoxy system, resulting in increasing the mechanical properties of the composite materials studied.

Micro-mechanical Modeling of the Consolidation Processes in Titanium Metal Matrix Composites (티타늄금속기 복합재료의 강화공정에 관한 미시역학적 모델링)

  • 김준완;김태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • Metal matrix composites(MMCs) are increasingly attractive for high technology components such as aerospace applications and transportations due to their high strength, stiffness, and toughness. Many processes for fabricating MMCs have been developed, and relatively simple Foil-Fiber-Foil method is usually employed in solid state consolidation processes. During the consolidation processes at high temperature, densification occurs by the inelastic flow of the matrix materials, and the process is coupled with the conditions of pressure, temperature and volume fraction of fiber and matrix materials. This is particularly important in titanium matrix composites, and thus a generic model based on micro-mechanical approaches enabling the evolution of density over time to be predicted has been developed. The mode developed is then implemented into FEM so that practical process simulation has been carried out. Further the experimental investigation of the consolidation behavior of SiC/Ti-6Al-4V composites using vacuum hot pressing has been performed, and the results obtained are compared with the model predictions.

  • PDF

Recent Trends and Application Status of the Metal Matrix Composites (MMCs) (최신 금속복합재료의 연구 개발 동향 및 응용 현황)

  • Kim, Hyo-Seop
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.164-173
    • /
    • 2020
  • Metal matrix composites (MMCs), which are a combination of two or more constituents with different physical or chemical properties, are today receiving great attention in various areas, as they have high specific strength, corrosion resistance, fatigue strength, and good tribological properties. This paper presents a research review on the combination of matrix and reinforced materials, fabrication processes, and application status of metal matrix composites. In this paper, we aim to discuss and review the importance of metal composite materials as advanced materials that can be used in various applications such as transportation, defense, sports, and extreme environments. In addition, the applicability and technology development trends in new process technology fields such as additive manufacturing of metal composites will be described.

The Effect of Catalysts on the Growth Characteristic of Carbon Nanotubes

  • Lee, Tae-Young;Han, Jae-Hee;Choi, Sun-Hong;Yoo, Ji-Beom;Park, Chong-Yun;Jung, Tae-Won;Yu, Se-Gi;Yi, Whi-Kun;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.666-669
    • /
    • 2002
  • Vertically aligned carbon nanotubes (CNTs) have been produced using various type of plasma enhanced chemical vapor deposition (PECVD). Catalysts such as Ni, Co, and Fe are used for growth of CNTs. To explain the effect of catalysts on the growth characteristics of CNTs, carbon species of $C_2H_2$ was observed in different catalysts using optical emission spectroscopy (OES) with theoretical calculation on the surface reaction in different catalysts.

  • PDF

Thermal and Electrochemical Properties of Polymannuronate-polyaniline Nanocomposites

  • Basavaraja, C.;Veeranagouda, Y.;Kim, Na-Ri;Jo, Eun-Ae;Lee, Kyoung;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1097-1100
    • /
    • 2009
  • New types of conducting polyaniline-polymannuronate (PANI-PM) composites were synthesized by in situ deposition techniques in an aqueous media. By dissolving different weight percentage of polymannuronate (PM) (5, 10, 15, and 25%), the oxidative polymerization of aniline was carried out using ammonium per sulfate as an oxidant. The obtained composites were studied for their thermal stability and electrochemical behavior. The thermal stability of PANI-PM composites is lower than PANI, which supports a strong interaction between PANI and PM. However, the composites show an appreciable electrochemical behavior. Based on these observation the PANI-PM composites can be explored in different fields such as electric devices, sensors, functional coatings, etc.

Microwave Absorbing Properties of Grid-type Magnetic Composites (격자형 자성 복합재의 전파흡수 특성)

  • Park, Myung-Joon;Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.389-393
    • /
    • 2012
  • Improvement in microwave absorbance has been investigated by insertion of a periodic air cavity in rubber composites filled with magnetic powders. A mixture of $Co_2Z$ hexagonal ferrite and Fe powders were used as the absorbent fillers in silicone rubber matrix. The complex permeability and complex permittivity of the magnetic composites were measured by reflection/transmission technique. In the grid-type magnetic absorbers, the equivalent permeability (${\mu}_{eq}$) and permittivity (${\varepsilon}_{eq}$) are calculated as a function of air volume rate (K) on the basis of effective medium theory. Reduction in the material parameters (especially, dielectric permittivity and magnetic loss) has been estimated with the increase of K. Plotting the ${\mu}_{eq}$ and ${\varepsilon}_{eq}$ on the solution map of wave-impedance matching, wide bandwidth microwave absorbance has been predicted in the magnetic composites with an optimum value of K.

Tribological and Mechanical Properties of UHMWPE/HDPE Composites

  • Na, Woo Seok;Lee, Kwang Ho;Kong, Tae Woong;Baek, Jung Youn;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.234-238
    • /
    • 2018
  • The influence of reinforcing UHMWPE powder on the tribological and mechanical properties of HDPE was investigated. The circularizing of UHMWPE powder was improved by high-speed rotation to enhance particle distribution and flowability. HDPE composites reinforced with UHMWPE powder in the range of 0-50 wt% were prepared by co-rotating twin screw extrusion. The abrasion resistance, plane friction coefficient, tensile strengths, and impact strengths of the composites were investigated as a function of the UHMWPE content. An increasing UHMWPE content decreased the plane friction coefficient and increased the abrasion resistance and impact strength. It is expected that HDPE composites reinforced with spherical UHMWPE powder particles can be used to improve the durability of products such as pipes in the future.

3D Weaving Process : Development of Near Net Shape Preforms and Verification of Mechanical Properties

  • Klapper, Vinzenz;Jo, Kwang-Hoon;Byun, Joon-Hyung;Song, Jung-Il;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.96-100
    • /
    • 2021
  • The lightweight industry continuously demands reliable near-net-shape fabrication where the preform just out-of-machine is close to the final shape. In this study, different half-finished preforms are made π-beams. Then the preforms are unfolded to make a 3D shape with integrated structure of fibers, providing easier handling in the further processing of composites. Several 3D textile preforms are made using weaving technique and are examined after resin infusion for mechanical properties such as inter-laminar shear strength, compressive strength and tensile strength. Considering that the time and labor are important parameters in modern production, 3D weaving technique reduces the manufacturing steps and therefore the costs, such as hand-lay up of textile layers, cutting, and converting into preform shape. Hence this 3D weaving technique offers many possibilities for new applications with efficient composite production.

Thermal, Curing, Elastic, and Mechanical Properties of Ethylene Propylene Diene Monomer/Polybutadiene/Carbon Black Composites

  • Tae-Hee Lee;Keon-Soo Jang
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.142-151
    • /
    • 2023
  • In this study, we investigate the thermal and mechanical properties of composites comprising ethylene propylene diene monomer (EPDM) and polybutadiene (PB) obtained using carbon black (CB) as a reinforcing and compatibilizing filler. Owing to the significance of elastomeric materials in various industrial applications, blending of EPDM and PB has emerged as a strategic method to optimize the material properties for specific applications. This study offers insights into the blend composition, its microstructure, and the resulting macroscopic behaviors, focusing on the synergetic effects of composite materials. Furthermore, this study delves into curing and rheological behaviors, crosslink densities, and mechanical, thermal, and elastic properties of the elastomeric composites. Through systematic exploration, we believe that this study will be beneficial to material scientists and engineers working on developing advanced elastomeric composites.

Mechanical Properties of SiC Particulate Reinforced Mg Matrix Composites Fabricated by Melt Stirring Method (용탕교반법에 의한 SiC 입자강화 Mg기 복합재료의 기계적 특성)

  • Lim, Suk-Won;Choh, Takao;Park, Young-Jin
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.441-449
    • /
    • 1993
  • SiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effet of several factors on mechanical properties and the efficiency of melt stirring method from the viewpoint of these properties were investigated. The tensile strength increased and the elongation decreased with decrease of the particle size or the increase of the paticulate volume fraction for pure magnesium matrix and Mg-5%Zn alloy matrix composites. A longer stirring time improved the tensile strength of these composites. The tensile strength of Mg-5%Ca alloy matrix composites which shows no uniform paticulate distribution was a little lower than that of matrix alloy. Rapid solidification rate is preferred for the improved tensile strength of these composites. The pure magnesium matrix and Mg-5%Zn alloy matrix composites have tensile strength of about 400MPa. This value agrees with the tensile strength of some magnesium matrix composites fabricated by liquid infiltration method or powder metallurgy method at the same volume fraction of reinforcements of whisker or particle. Therefore, the melt stirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF