DOI QR코드

DOI QR Code

Microwave Absorbing Properties of Grid-type Magnetic Composites

격자형 자성 복합재의 전파흡수 특성

  • Park, Myung-Joon (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kim, Sung-Soo (Department of Advanced Materials Engineering, Chungbuk National University)
  • 박명준 (충북대학교 신소재공학과) ;
  • 김성수 (충북대학교 신소재공학과)
  • Received : 2011.12.20
  • Published : 2012.05.25

Abstract

Improvement in microwave absorbance has been investigated by insertion of a periodic air cavity in rubber composites filled with magnetic powders. A mixture of $Co_2Z$ hexagonal ferrite and Fe powders were used as the absorbent fillers in silicone rubber matrix. The complex permeability and complex permittivity of the magnetic composites were measured by reflection/transmission technique. In the grid-type magnetic absorbers, the equivalent permeability (${\mu}_{eq}$) and permittivity (${\varepsilon}_{eq}$) are calculated as a function of air volume rate (K) on the basis of effective medium theory. Reduction in the material parameters (especially, dielectric permittivity and magnetic loss) has been estimated with the increase of K. Plotting the ${\mu}_{eq}$ and ${\varepsilon}_{eq}$ on the solution map of wave-impedance matching, wide bandwidth microwave absorbance has been predicted in the magnetic composites with an optimum value of K.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. H. Matsushita, Electromagnetic Shielding and Absorbing Practical Technology Practical Manual, pp. 185-189, Mimatsu Co. Tokyo (2006).
  2. S. Yoshida, M. Sato, E. Sugawara, and Y. Shimada, J. Appl. Phys. 85, 4636 (1999). https://doi.org/10.1063/1.370432
  3. G. B. Ryu and S. S. Kim, Met. Mater. Int. 17, 805 (2011). https://doi.org/10.1007/s12540-011-1018-y
  4. J. B. Kim and T. H. Noh, J. Kor. Inst. Met. & Mater. 47, 866 (2009).
  5. Y. Naito, Microwave Absorbers, Ohm Co. (1987).
  6. Y. Naito and K. Suetake, IEEE Trans. Ant. Prop. 21, 484 (1973). https://doi.org/10.1109/TAP.1973.1140517
  7. A. Oikonomou, T. Giannakopoulou, and G. Litsardakis, J. Magn. Magn. Mater. 316, 827 (2007). https://doi.org/10.1016/j.jmmm.2007.03.114
  8. J. L. Wallace, IEEE Trans. Magn. 29, 4209 (1993). https://doi.org/10.1109/20.280862
  9. Y. Naito, H. Anzai and T. Mizumoto, IEICE Japan, J76-B-II, 898 (1993).
  10. Y. Naito and T. Mizumoto, Ferrites: The 6th International Conference on Ferrites, pp. 1320-1325, Kyoto (1992).
  11. D. I. Kim, M. Takahashi, H. Anzai, and S. Y. Jun, IEEE Trans. EMC, 38, 173 (1996).
  12. E. F. Kuester and C. L. Holloway, IEEE Trans. EMC, 36, 300 (1994).
  13. E. F. Kuester and C. L. Holloway, IEEE Trans. EMC, 36, 307 (1994).
  14. M. J. Park and S. S. Kim, IEEE Trans. Magn, 36, 3272 (2000). https://doi.org/10.1109/20.908766
  15. V. Rodriguez, Annual Review Progress Applied Computational Electromagnetics, pp. 815-818 (2003).
  16. M. N. O. Sadiku, Elements of Elecromagnetics, Oxford Univeristy Press, NewYork, (2007).
  17. H. M. Musal, and H. T. Hahn, IEEE Trans. Magn, 25, 3851 (1989). https://doi.org/10.1109/20.42454
  18. S. S. Kim, S. B. Cho, K. K. Choi, K. I. Gueon, J. M. Kim, and K. S. Churn, IEEE Trans. Magn. 27, 5462 (1991). https://doi.org/10.1109/20.278872