Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.5.389

Microwave Absorbing Properties of Grid-type Magnetic Composites  

Park, Myung-Joon (Department of Advanced Materials Engineering, Chungbuk National University)
Kim, Sung-Soo (Department of Advanced Materials Engineering, Chungbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.5, 2012 , pp. 389-393 More about this Journal
Abstract
Improvement in microwave absorbance has been investigated by insertion of a periodic air cavity in rubber composites filled with magnetic powders. A mixture of $Co_2Z$ hexagonal ferrite and Fe powders were used as the absorbent fillers in silicone rubber matrix. The complex permeability and complex permittivity of the magnetic composites were measured by reflection/transmission technique. In the grid-type magnetic absorbers, the equivalent permeability (${\mu}_{eq}$) and permittivity (${\varepsilon}_{eq}$) are calculated as a function of air volume rate (K) on the basis of effective medium theory. Reduction in the material parameters (especially, dielectric permittivity and magnetic loss) has been estimated with the increase of K. Plotting the ${\mu}_{eq}$ and ${\varepsilon}_{eq}$ on the solution map of wave-impedance matching, wide bandwidth microwave absorbance has been predicted in the magnetic composites with an optimum value of K.
Keywords
composites; powder processing; magnetic properties; computer simulation; microwave absorbers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Matsushita, Electromagnetic Shielding and Absorbing Practical Technology Practical Manual, pp. 185-189, Mimatsu Co. Tokyo (2006).
2 S. Yoshida, M. Sato, E. Sugawara, and Y. Shimada, J. Appl. Phys. 85, 4636 (1999).   DOI   ScienceOn
3 G. B. Ryu and S. S. Kim, Met. Mater. Int. 17, 805 (2011).   DOI   ScienceOn
4 J. B. Kim and T. H. Noh, J. Kor. Inst. Met. & Mater. 47, 866 (2009).
5 Y. Naito, Microwave Absorbers, Ohm Co. (1987).
6 Y. Naito and K. Suetake, IEEE Trans. Ant. Prop. 21, 484 (1973).   DOI
7 A. Oikonomou, T. Giannakopoulou, and G. Litsardakis, J. Magn. Magn. Mater. 316, 827 (2007).   DOI   ScienceOn
8 J. L. Wallace, IEEE Trans. Magn. 29, 4209 (1993).   DOI   ScienceOn
9 Y. Naito, H. Anzai and T. Mizumoto, IEICE Japan, J76-B-II, 898 (1993).
10 Y. Naito and T. Mizumoto, Ferrites: The 6th International Conference on Ferrites, pp. 1320-1325, Kyoto (1992).
11 D. I. Kim, M. Takahashi, H. Anzai, and S. Y. Jun, IEEE Trans. EMC, 38, 173 (1996).
12 E. F. Kuester and C. L. Holloway, IEEE Trans. EMC, 36, 300 (1994).
13 E. F. Kuester and C. L. Holloway, IEEE Trans. EMC, 36, 307 (1994).
14 M. J. Park and S. S. Kim, IEEE Trans. Magn, 36, 3272 (2000).   DOI   ScienceOn
15 V. Rodriguez, Annual Review Progress Applied Computational Electromagnetics, pp. 815-818 (2003).
16 M. N. O. Sadiku, Elements of Elecromagnetics, Oxford Univeristy Press, NewYork, (2007).
17 H. M. Musal, and H. T. Hahn, IEEE Trans. Magn, 25, 3851 (1989).   DOI   ScienceOn
18 S. S. Kim, S. B. Cho, K. K. Choi, K. I. Gueon, J. M. Kim, and K. S. Churn, IEEE Trans. Magn. 27, 5462 (1991).   DOI   ScienceOn