• Title/Summary/Keyword: Composites material

Search Result 2,173, Processing Time 0.04 seconds

A Study on the Fabrication and Acoustic Properties of Piezocomposites (압전복합재료의 제작 및 음향특성 고찰)

  • Lee, Sang-Wook;Nam, Hyo-Duk;Ryu, Jeong-Tak;Kim, Yeon-Bo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.35-38
    • /
    • 2003
  • In this paper, we investigated the electric and acoustic properties of piezoelectric composites, which were fabricated using polymer and piezoelectric ceramics, when the volume fraction of PZT varies. Practically, the shrinkage rate of polymer is an important factor in ultrasonic transducer fabrication. When 10 wt% filler A was added into polymer(Epofix), the lowest shrinkage was resulted. The electromechanical coupling factor($k_t$) of the fabricated piezoelectric composites showed its highest when the volume fraction PZT was 0.6. It decreased if the volume fraction was higher than the value. The relative permittivity and acoustic impedance of piezoelectric composites decreased linearly when PZT volume fraction was decreased. The lowest acoustic impedance was 3.2 when the volume fraction of PZT was 0.2.

  • PDF

Fabrication of SiC Fiber Reinforced Porous Reaction Bonded SiC Composite and Its Mechanical Properties (SiC Fiber 강화 다공질 반응 소결 탄화규소 Composite의 제조 및 기계적 특성)

  • Han, Jae-Ho;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.509-514
    • /
    • 2006
  • In this study, chopped Hi-Nicalon SiC fiber Reinforced Porous Reaction Bonded SiC (RBSC) composites and it fabrication process were developed by using Si melt infiltration process. The porosity and average pore size in fabricated chopped SiC fiber reinforced porous RBSC composites were in the range of $30{\sim}40%$ and $40-90{\mu}m$, which mainly determined by the SiC powder size used as starting material and amount of residual Si in porous composites. The maximum flexural strength of chopped SiC fiber reinforced porous RBSC composite was as high as 80 MPa. The delayed fracture behavior was observed in chopped SiC fiber reinforced porous RBSC composites upon 3-point bending strength test.

Parametric study on design of sandwich structures composing of fibre reinfoced composites, polymer foam and resin concrete (섬유강화 복합재료, 고분자 포움 및 레진 콘크리트로 구성된 샌드위치 구조 설계를 위한 파라메트릭 연구)

  • Kim D.I.;Chang S.H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure for machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance both directional bending stiffnesses at the same time. From the results optimal configuration and materials for high precesion machine tools are proposed.

  • PDF

Pulse-echo Response of Piezoceramics PZT-Polymer 1-3-0 Type Composite (1-3-0형 복합압전체의 펄스-에코특성)

  • 양윤석;유영준;최헌일;손무헌;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.303-306
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powder was synthesized by Wet-Dry combination method. The flexible 1-3-0 type composites were fabricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. This paper represents the acoustic properties with various 3rd phase wt.%. The acoustic impedance of 1-3-0 type composites was lower than that of single phase PZT ceramics. The pulse-echo response of transducer fabricated with 1-3-0 type composites was better than solid PZT transducer.

  • PDF

Magnetostriction and Young's Modulus Measurement of FeCoGeW/phenol Composites (FeCoGeW/페놀 복합체의 자왜 및 영률 측정)

  • Park, K.I.;Kim, H.G.;Shin, K.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.325-328
    • /
    • 2003
  • The magnetostriction of FeCoGeW/phenol composites is measured under the external magnetic field. A few Measurement are carried out by using the electrical-resistance strain gage, the Wheaton Bridge for eliminating the unnecessary voltage, the lock-in-amplifier for the signal amplification and noise filtering. When the external magnetic field is applied to the longitudinal direction against those samples which is the 10wt.% phenol in composites, the theoretical maximum strain of 120ppm is obtained. According to the larger strain than that of others solid state actuators and piezoelectric actuators. FeCoGeW/phenol composites could be useful as an actuator.

  • PDF

Preparation and characterization of prospective disulfide based electrode materials for lithium batteries

  • Ragupathy, Dhanusuraman;Gopalan, Anantha Iyengar;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • Organic disulfide compounds are having higher theoretical capacity than the conventional cathode material and are considered as the important storage material. Here, we are reporting the preparation of poly (2,2'-dithiodianiline) PDDA/multiwall carbon nanotubes, (MWCNTs) composites under different experimental conditions. Amine functionalized and unfunctionalized MWCNTs were independently used for the preparation of composites. Composites were prepared in the presence of cetyl trimethyl bromide (CTAB), a cationic surfactant, and also in the absence of CTAB. A physical mixture of PDTDA and MWCNTs was formed with unfunctionalized MWCNTs. Grafting of PDDA onto MWCNTs was performed by chemical oxidative polymerization of 2, 2'-dithiodianiline in the presence of amine functionalized MWCNTs. The composites of MWCNTs and PDTDA were characterized for structure, morphology and thermal properties through Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, scanning electron microscopy and UV-visible spectroscopy. The composite materials prepared by this method are expected to find applications as electrode materials for lithium batteries.

The FSI Analysis Evaluation of Strength for the Wind Turbine Rotor Blade Improved by the Aramid Fiber (아라미드섬유 보강 풍력발전기 로터 블레이드의 연성해석 강도평가)

  • Kim, Seok-Su;Kang, Ji-Woong;Kwon, Oh-Heon
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.17-23
    • /
    • 2015
  • Because of the energy resources shortage and global pollution, the wind power systems have been developed consistently. Among the components of the wind power system, the rotor blades are the most important component. Generally it is made of GFRP material. Recently, GFRP material has been replaced by CFRP composite material in the blade which has an aerodynamic profile and twisted tip. However the failures has occurred in the trailing edge of the blade by the severe wind loading. Thus, tougher material than CFRP material is needed as like the aramid fiber. In this study, we investigated the mechanical behaviors of the blade using aramid fiber composites about wind speed variation. One-way FSI (fluid-structure interaction)analysis for the wind rotor blade was conducted. The structural analyses using the surface pressure loading resulted from wind flow field analysis were carried out. The results and analysis procedure in this paper can be utilized for the best strength design of the blade with aramid fiber composites.

Poly(lactic acid)/Wood Flour/Montmorillonite Nanocomposites (I) : Tensile and Morphological Properties

  • Kim, Jin-Sung;Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Yoon, Ho-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.426-433
    • /
    • 2009
  • This study investigates the tensile and morphological properties of nanocomposites prepared from poly(lactic acid) (PLA), wood flour (WF) and montmorillonite (MMT) by melt compounding with a twin screw extruder. In order to enhance the mechanical properties of PLA/WF composites, maleic anhydride grafted PLA (MAPLA) is synthesized as a compatibilizer. MAPLA prepared in the laboratory is characterized using FT-IR (Fourier transformed infrared spectroscopy). From the results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis for nanocomposites, we confirmed that silicate layers of MMT are intercalated and partially exfoliated. When 2 wt% MAPLA is added, the tensile strength and modulus of PLA/WF/MAPLA composites were higher than those of the PLA/WF composite. The addition of MMT increases the tensile modulus of PLA/WF/MAPLA composites but decreases the tensile strength.

Monte Carlo simulation and study of REE/PET composites with wide γ-ray protection

  • Tongyan Cui;Ruixin Chen;Shumin Bi;Rui Wang;Zhongjian Ma;Qingxiu Jia
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2919-2926
    • /
    • 2023
  • In this paper, rare earth element (REE)/polyester composites were designed with lanthanum oxide, gadolinium oxide, and lutetium oxide as ray shielding agents, and polyethylene terephthalate (PET) as the base. Monte Carlo simulation was carried out using FLUKA software. We found that the radiation protection performance of the composite is affected by the type and amount of REE; a higher amount of REE equated to a better radiation protection performance of the composite. When the thickness of the composite and total thickness of the REE is constant, the number of superimposed layers inside the composite does not affect its shielding performance. Compared with a single-type REE/PET composite, a mixed-type REE/PET composite has a wider range of γ-ray absorption and better radiation protection performance. When the mass ratio of PET to REE is 2:8 and different types of REE are mixed with equal mass, several 0.2 cm-thick mixed-type REE/PET composites can shield >70% of 60 and 80 KeV γ-rays.

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.