• Title/Summary/Keyword: Composites material

Search Result 2,173, Processing Time 0.037 seconds

Effect of Silica Content on the Dielectric Properties of Epoxy/Crystalline Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.322-325
    • /
    • 2012
  • Crystalline silica was synthesized by annealing amorphous silica at $1,300^{\circ}C$ or $1,400^{\circ}C$ for various times, and the crystallinity was estimated by X-ray diffraction (XRD) analysis. In order to prepare a low dielectric material, epoxy/crystalline silica composites were prepared, and the effect of silica content on the dielectric properties was studied under various functions of frequency and ambient temperature. The dielectric constant decreased with increasing crystalline silica content in the epoxy composites, and it also decreased with increasing frequency. At 120 Hz, the value of 5 wt% silica decreased by 0.25 compared to that of 40 wt% silica, and at 23 kHz, the value of 5 wt% silica decreased by 0.23 compared to that of 40 wt% silica. The value increased with increasing ambient temperature.

Temperature dependance of Dielectric strength in Nano-composites (Nano-composites 절연파괴강도의 온도의존성)

  • Lee, Kang-Won;Lee, Hyuk-Jin;Kim, Jong-Hwan;Shin, Jong-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.256-257
    • /
    • 2008
  • Recently, with the increase of demand of electricity, electric cable or electric transfer machine are rapidly developed and meet the demand with the extra high voltage and massive capacity, the dangers of electrical accident of insulator are increasing by the electric stress, insulation degradation and insulation breakdown in insulator. In this paper, it is investigated that the temperature dependance of dielectric strength in nano-composites. We obtained that breakdown voltage of 0.4 [wt%] specimens is higher than the other $SiO_2$ content.

  • PDF

A Study on the variations of tracking resistance of outdoor Epoxy composites due to moisture absorption aging (흡습열화에 따른 옥외용 에폭시 복합체의 내트래킹성 변화에 관한 연구)

  • 김탁용;이덕진;가출현;김명호;박창옥;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.526-528
    • /
    • 1999
  • Epoxy resin has been used as matrix resin of advanced composites owing to ideally suitable properties and inherent physical and chemical properties for electrical and electronic insulation In this paper, in order to evaluate the performance of epoxy composites for out door insulation, variations of tracking resistance were investigated on the moisture absorption aging condition. Also, IPN methods were introduced in order to improve performance for out door use. As a result, it was confirmed that tracking resistance were degraded with boilling time. But, it was confirmed that specimen of IPN structure and KC-335 have the better tracking resistance properties than SIN structure by moisture absorption aging

  • PDF

Development of 1-3 Piezo-Composites made by the method of "Dice & Fill" and Estimation of Their Piezoelectric Characteristics (Dice & Fill 방식을 이용한 1-3 복합재 압전진동자 개발 및 압전특성 평가)

  • 김영덕;정우철;김광일;김흥락;김동수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.869-872
    • /
    • 2000
  • The aim of present work was to fabricate the piezoelectric composite materials of low megahertz applications such as non-destructive testing of materials. Among all the various composites, those with PZT rods embedded in Spurrs epoxy with regular periodicity (1-3 connectivity) was fabricated by dice and fill method. The fabricated size of the PZT cell were 0.18X0.18, 0.28X0.28mm$^2$, respectively. And the volume ratio of the PZT cell were 52, 64%, respectively. The resonant frequency and anti-resonant frequency of the composites were 3.5 MHz and 4.3MHz, respectively. The piezoelectric coupling coefficient were about 38 and 37% and the mechanical quality factor were about 12.7 and 22. These value were very different from these of bulk PZT Plate.

  • PDF

An Estimation of Life Time in Epoxy Composites Using Weibull Distribution (와이블 분포를 이용한 에폭시 복합체의 수명시간 예측)

  • 오현석;이동규;장인범;박건호;김용주;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.360-363
    • /
    • 1997
  • The method of estimating life time of epoxy composites which be widely used for transformers has been studied in this paper. The breakdown properties of specimens are observed by appling high AC voltage at the room temperature from a series of the experiments. Afterwards, the breakdown time was determined under the constant voltage below the lowest breakdown voltage. Also, V-t properties were found out using weibull distribution widely used in the applications of discrete data for estimating life time of epoxy composites and life exponent n was gained properly. when life exponent is gained is found out, the tong breakdown life time at used voltage can be estimated from breakdown experiments in short time using reverse law of n power.

  • PDF

Thermal, Mechanical, and Electrical Properties for EMNC_60 and EMNC_65 (EMNC_60과 EMNC_65에 대한 열적, 기계적, 전기적 특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.895-901
    • /
    • 2012
  • In order to application for high voltage heavy electric equipments, epoxy/microsilica 60 wt%/nano layered silicate composites (EMNC_60) and epoxy/microsilica 65 wt%/nano layered silicate composites (EMNC_65) respectively was synthesized by our electric field dispersion method and the result was obtained completely dispersion state. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanical properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. The study on thermal property, EMNC_65 was better than EMNC_60 and mechanical, electrical properties much improved EMNC_60 compared with EMNC_65.

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.

FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

  • Kim, Weon-Ju;Kim, Daejong;Park, Ji Yeon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.565-572
    • /
    • 2013
  • The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade $SiC_f/SiC$ composites are briefly reviewed. A CVI-processed $SiC_f/SiC$ composite with a PyC or $(PyC-SiC)_n$ interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres (중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구)

  • Yomin, Choi;Hyun‐Gyoo, Shin
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

Performance Evaluation of Cement Composites Mixed with Multi-Wall Carbon Nanotube and Nanosilica (다중벽 탄소나노튜브와 나노실리카를 혼입한 시멘트 복합체의 성능 평가)

  • Kim, Seong Woo;Son, Jeong Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.185-186
    • /
    • 2023
  • Recently, a lot of nano-scale material technology development and research have been conducted in construction fields to improve the compressive strength and durability of cement-based Composites. There are some studies that have confirmed the properties and application effects of cement-based complex using each nanomaterial, but development and research using both materials are relatively limited. This study sought to confirm the effect of multi-wall carbon nanotubes (MWCNT) and nanosilica, which are representative construction nanomaterials, on the compressive strength, voids, and microstructure formation of cement. The purpose was to produce a cement composite by changing the mixing rate of the two nanomaterials, and to find the optimal mixing amount considering its mechanical and rheological properties.

  • PDF