Browse > Article
http://dx.doi.org/10.5516/NET.07.2012.084

FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING  

Kim, Weon-Ju (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Kim, Daejong (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Park, Ji Yeon (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.45, no.4, 2013 , pp. 565-572 More about this Journal
Abstract
The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade $SiC_f/SiC$ composites are briefly reviewed. A CVI-processed $SiC_f/SiC$ composite with a PyC or $(PyC-SiC)_n$ interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.
Keywords
$SiC_f/SiC$ Composite; LWR Fuel Cladding; Corrosion; Joining; Reliability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. -J. Kim, S. M. Kang, K. H. Park, A. Kohyama, W. -S. Ryu, and J. Y. Park, "Fabrication and Ion Irradiation Characteristics of SiC-Based Ceramics for Advanced Nuclear Energy Systems," J. Kor. Ceram. Soc., 42(8), 575 (2005).   과학기술학회마을   DOI   ScienceOn
2 B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R. H. Jones, and L. L. Snead, "Issues and Advances in SiCf/SiC Composites Development for Fusion Reactors," J. Nucl. Mater., 329-333, 56 (2004).   DOI   ScienceOn
3 Y. Katoh, T. Nozawa, L. L. Snead, K. Ozawa, H. Tanigawa, "Stability of SiC and Its Composites at High Neutron Fluence," J. Nucl. Mater., 417, 400 (2011).   DOI   ScienceOn
4 G. E. Youngblood, R. J. Kurtz, and R. H. Jones, "SiC/SiC Design for a Flow Channel Insert," Fusion Materials Semiannual Progress Report, DOE-ER-0313/37, DOE Office of Fusion Energy Sciences (2005).
5 H. Nabielek, W. Schenk, W. Heit, A. -W. Mehner, and D. T. Goodin, "The Performance of High-Temperature Reactor Fuel Particles at Extreme Temperatures," J. Nucl. Technol., 84, 62 (1989).
6 W. -J. Kim, "Development and Application of Continuous Fiber Ceramic Composites," Ceram. Kor., 20(2), 65 (2007).
7 L. L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, and M. Sawan, "Silicon Carbide Composites as Fusion Power Reactor Structural Materials," J. Nucl. Mater., 417, 330 (2011).   DOI   ScienceOn
8 Y. Katoh, L. L. Snead, T. Nozawa, S. Kondo, and J. T. Busby, "Thermophysical and Mechanical Properties of Near-Stoichiometric Fiber CVI SiC/SiC Composites after Neutron Irradiation at Elevated Temperatures," J. Nucl. Mater., 403, 48 (2010).   DOI   ScienceOn
9 Y. Katoh, K. Ozawa, T. Hinoki, Y. Choi, L. L. Snead, and A. Hasegawa, "Mechanical Properties of Advanced SiC Fiber Composites Irradiated at Very High Temperatures," J. Nucl. Mater., 417, 416 (2011).   DOI   ScienceOn
10 W. -J. Kim, J. H. Lee, D. -H. Yoon, and J. Y. Park, "Optimization of an Interphase Thickness in Hot-Pressed SiCf/ SiC Composites," Ceram. Eng. Sci. Proc., 30(10), 77 (2009).
11 W. J. Sherwood, "CMCs Come Down to Earth," Am. Ceram. Soc. Bull., 82(8), 9101 (2003).
12 H. Feinroth, "Multi-layered Ceramic Tube for Fuel Con-tainment Barrier and Other Applications in Nuclear and Fossil Power Plants," U.S. Patent, US20090032178A1 (2009).
13 M. S. Kazimi, J. Dobisesky, D. Carpenter, J. Richards, E. E. Pilat, and E. Shwageraus, "Feasibility and Economic Benefits of PWR Cores with Silicon Carbide Cladding," MIT-ANT-TR-134, Massachusetts Institute of Technology (2011).
14 J. Dobisesky, E. E. Pilat, and M. S. Kazimi, "Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment," MIT-ANT-TR-136, Massachusetts Institute of Technology (2011).
15 Y. Katoh, L. L. Snead, T. D. Burchell, and W. E. Windes, "Composite Technology Development Plan," ORNL/TM-2009/185, Oak Ridge National Laboratory (2010).
16 L. Chaffron and J. -L. Seran, "Innovative SiCf/SiC Composite Materials for Fast Reactor," Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, San Diego, USA, June 13-17, 2010.
17 J. -A. Jung, S. H. Shin, J. J. Kim, K. J. Choi, and J. H. Kim, "Prediction of Fuel Cladding Performance for Ultra-long Cycle Fast Reactor Application," Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-18, 2012.
18 Y. Katoh, D. F. Wilson, and C. W. Forsberg, "Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors," ORNL/TM-2007/168, Oak Ridge National Laboratory (2007).
19 H. Feinroth, M. Ales, E. Barringer, G. Kohse, D. Carpenter, and R. Jaramillo, "Mechanical Strength of CTP Triplex SiC Fuel Clad Tubes after Irradiation in MIT Research Reactor under PWR Coolant Conditions," Ceram. Eng. Sci. Proc., 30(10), 47 (2009).
20 K. Dawi, M. Balat-Pichelin, L. Charpentier, and F. Audubert, "High Temperature Oxidation of SiC under Helium with Low-pressure Oxygen. Part 3: $\beta$-SiC-SiC/PyC/SiC," J. Eur. Ceram. Soc., 32, 485 (2012).   DOI   ScienceOn
21 D. Carpenter, "An Assessment of Silicon Carbides as a Cladding Material for Light Water Reactors," Ph. D. Thesis, Massachusetts Institute of Technology (2010).
22 G. Griffith, "LWRS Advanced LWR Nuclear Fuels," 2010 American Nuclear Society Winter Meeting and Nuclear Technology Expo, Las Vegas, USA, Nov. 7-11, 2010.
23 S. Yajima, J. Hayashi, M. Omori, and K. Okamura, "Development of a Silicon Carbide Fibre with High Tensile Strength," Nature, 261, 683 (1976).   DOI
24 A. R. Bunsell and A. Piant, "A Review of the Development of Three Generations of Small Diameter Silicon Carbide Fibers," J. Mater. Sci., 41, 823 (2006).   DOI
25 K. A. Terrani, J. O. Kiggans, Y. Katoh, K. Shimoda, F. C. Montgomery, B. L. Armstrong, C. M. Parish, T. Hinoki, J. D. Hunn, and L. L. Snead, "Fabrication and Characterization of Fully Ceramic Microencapsulated Fuels," J. Nucl. Mater., 426, 268 (2012).   DOI   ScienceOn
26 B. Tompkins, "Advancing the Cause of Fuel Reliability," Nuclear News, 51(7), 34 (2008).
27 Y. Katoh, "SiC Ceramic Cladding for Light Water Reactors: Preliminary Technology Review by ORNL/NMST Expert Team," Invited Seminar at Korea Atomic Energy Research Institute, Daejeon, Korea, Sep. 23, 2011.
28 K. A. Terrani, L. L. Snead, and J. C. Gehin, "Microencapsulated Fuel Technology for Commercial Light Water and Advanced Reactor Application," J. Nucl. Mater., 427, 209 (2012).   DOI   ScienceOn
29 Y. Katoh, L. L. Snead, I. Szlufarska, and W. J. Weber, "Radiation Effects in SiC for Nuclear Structural Applications," Curr. Opin. Solid State Mater. Sci., 16, 143 (2012).   DOI   ScienceOn
30 K. Yueh, D. Carpenter, and H. Feinroth, "Clad in Clay," Nucl. Eng. Intern., 55, 14 (2010).
31 A. G. Evans and F. W. Zok, "The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites," J. Mater. Sci., 29, 3857 (1994).   DOI   ScienceOn
32 A. Kohyama, S. -M. Dong, and Y. Katoh, "Development SiC/SiC Composites by Nano-Infiltration and Transient Eutectic (NITE) Process," Ceram. Eng. Sci. Proc., 23(3), 311 (2002).   DOI
33 C. H. Henager Jr., Y. Shin, Y. Blum, L. A. Giannuzzi, B. W. Kempshall, and S. M. Schwarz, "Coatings and Joining for SiC and SiC-Composites for Nuclear Energy Systems," J. Nucl. Mater., 367-370, 1139 (2007).   DOI   ScienceOn
34 E. Barringer, Z. Faiztompkins, H. Feinroth, T. Allen, M. Lance, H. Meyer, L. Walker, and E. Lara-Curzio, "Corrosion of CVD Silicon Carbide in $500^{\circ}C$ Supercritical Water," J. Am. Ceram. Soc., 90, 315 (2007).   DOI   ScienceOn
35 B. V. Cockeram, "Flexural Strength and Shear Strength of Silicon Carbide to Silicon Carbide Joints Fabricated by a Molybdenum Diffusion Bonding Technique," J. Am. Ceram. Soc., 88, 1892 (2005).   DOI   ScienceOn
36 Y. Katoh and L. L. Snead, "Operating Temperature Window for SiC Ceramics and Composites for Fusion Energy Applications," Fus. Sci. Technol., 56, 1045 (2009).   DOI
37 J. Knorr, W. Lippmann, A. -M. Reinecke, R. Wolf, A. Kerber, and A. Wolter, "SiC Encapsulation of (V)HTR Components and Waste by Laser Beam Joining of Ceramics," Nucl. Eng. Des., 238, 3129 (2008).   DOI   ScienceOn
38 S. Harrison and H. L. Marcus, "Gas-Phase Selective Area Laser Deposition (SALD) Joining of SiC," Mater. Des., 20, 147 (1999).   DOI   ScienceOn
39 L. L. Snead, T. Nozawa, Y. Katoh, T. -S. Byun, S. Kondo, and D. A. Petti, "Handbook of SiC Properties for Fuel Performance Modeling," J. Nucl. Mater., 371, 329 (2007).   DOI   ScienceOn
40 G. Newsome, L. L. Snead, T. Hinoki, Y. Katoh, and D. Peters, "Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites," J. Nucl. Mater., 371, 76 (2007).   DOI   ScienceOn
41 T. Hinoki, L. L. Snead, Y. Katoh, A. Hasegawa, T. Nozawa, and A. Kohyama, "The Effect of High Dose/High Temperature Irradiation on High Purity Fibers and Their Silicon Carbide Composites," J. Nucl. Mater., 307-311, 1157 (2002).   DOI   ScienceOn
42 B. V. Cockeram, "Fracture Toughness and Flexural Strength of Chemically Vapor-Deposited Silicon Carbide As Determined Using Chevron-Notched and Surface Crack in Flexure Specimens," J. Am. Ceram. Soc., 87, 1093 (2004).   DOI   ScienceOn
43 L. L. Snead, Y. Katoh, and S. Connery, "Swelling of SiC at Intermediate and High Irradiation Temperatures," J. Nucl. Mater., 367-370, 677 (2007).   DOI   ScienceOn
44 D. Carpenter, "Assessment of Innovative Fuel Designs for High Performance Light Water Reactors," M. S. Thesis, Massachusetts Institute of Technology (2006).
45 D. G. S. Davies, "The Statistical Approach to Engineering Design in Ceramics," Proc. Brit. Ceram. Soc., 22, 429 (1973).
46 J. Lamon, "Properties and Characteristics of SiC and SiC /SiC Composites," pp. 323-338 in Comprehensive Nuclear Materials, Edited by R. Konings, Elsevier, Amsterdam (2012).
47 N. S. Jacobson, "Corrosion of Silicon-Based Ceramics in Combustion Environments," J. Am. Ceram. Soc., 76, 3 (1993).   DOI
48 W.-J. Kim, H. S. Hwang, and J. Y. Park, "Corrosion Behavior of Reaction-bonded Silicon Carbide Ceramics in Hightemperature Water," J. Mater. Sci. Lett., 21, 733 (2002).   DOI   ScienceOn
49 W.-J. Kim, H. S. Hwang, J. Y. Park, and W. -S. Ryu, "Corrosion Behaviors of Sintered and Chemically Vapor Deposited Silicon Carbide Ceramics in Water at $360^{\circ}C$," J. Mater. Sci. Lett., 22, 581 (2003).   DOI   ScienceOn
50 E. J. Opila, "Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure," J. Am. Ceram. Soc., 82, 625 (1999)
51 C. H. Henager, Jr., A. L. Schemer-Kohrn, S. G. Pitman, D. J. Senor, K. J. Geelhood, and C. L. Painter, "Pitting Corrosion in CVD SiC at $300^{\circ}C$in Deoxygenated High-Purity Water," J. Nucl. Mater., 378, 9 (2008).   DOI   ScienceOn
52 C. H. Henager Jr. and R. J. Kurtz, "Low-Activation Joining of SiC/SiC Composites for Fusion Applications," J. Nucl. Mater., 417, 375 (2011).   DOI   ScienceOn
53 J. D. Stempien, D. Carpenter, G. Kohse, and M. S. Kazimi, "Behavior of Triplex Silicon Carbide Fuel Cladding Designs Tested under Simulated PWR Conditions," MIT-ANPTR-135, Massachusetts Institute of Technology (2011).
54 T. Cheng, J. R. Keiser, M. P. Brady, K. A. Terrani, and B. A. Pint, "Oxidation of Fuel Cladding Candidate Materials in Steam Environments at High Temperature and Pressure," J. Nucl. Mater., 427, 396 (2012).   DOI   ScienceOn
55 H. -C. Jung, Y. -H. Park, J. -S. Park, T. Hinoki, and A. Kohyama, "R&D of Joining Technology for SiC Components with Channel," J. Nucl. Mater., 386-388, 847 (2009).   DOI   ScienceOn
56 M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H. C. Jung, T. Hinoki, and A. Kohyama, "Joining of SiC-Based Materials for Nuclear Energy Applications," J. Nucl. Mater., 417, 379 (2011).   DOI   ScienceOn
57 R. Naslain, "Design, Preparation and Properties of Non- Oxide CMCs for Application in Engines and Nuclear Reactors: an Overview," Comp. Sci. Technol., 64, 155 (2004).   DOI   ScienceOn
58 R. J. Kerans, R. S. Hay, N. J. Pagano, and T. A. Parthasarathy, "The Role of the Fiber-Matrix Interface in Ceramic Composites," Am. Ceram. Soc. Bull., 68(2), 429 (1989).
59 T. M. Besmann, B. W. Sheldon, R. A. Rowden, and D. P. Stinton, "Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic Composites," Science, 253, 1104 (1991).   DOI   ScienceOn
60 M. Takeda, Y. Kagawa, S. Mitsuno, Y. Imai, and H. Ichikawa, "Strength of a Hi-NicalonTM/Silicon-Carbide-Matrix Composite Fabricated by the Multiple Polymer Infiltration- Pyrolysis Process," J. Am. Ceram. Soc., 82, 1579 (1999).
61 W. B. Hillig, "Making Ceramic Composites by Melt Infiltration," Am. Ceram. Soc. Bull., 73(4), 56 (1994).