• Title/Summary/Keyword: Composites Material

Search Result 2,192, Processing Time 0.027 seconds

Effect of Ce0.9Gd0.1O1.95 as a promoter upon the oxygen transfer properties of MgMnO3-δ-Ce0.9Gd0.1O1.95 composite oxygen carrier materials for chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • Chemical looping combustion (CLC) is a promising carbon capture and storage (CCS) technology whose efficiency and cost primarily relies on the oxygen carrier materials used. In this paper, gadolinium-doped ceria (GDC, Ce0.9Gd0.1O1.95) was added as a promoter to improve the oxygen transfer rate of MgMnO3-δ oxygen carrier materials. Increasing GDC content significantly increased the oxygen transfer rate of MgMnO3-δ-GDC composites for the reduction reaction due to an increase in the surface adsorption of CH4 via oxygen vacancies formed on the surface of the GDC. On the other hand, the oxygen transfer rate for the oxidation reaction decreased linearly with increasing GDC content due to the oxygen storage ability of GDC. Adsorbed oxygen molecules preferentially insert themselves into oxygen vacancies of the GDC lattice rather than reacting with (Mg,Mn)O to form MgMnO3-δ during the oxidation reaction.

Culture and mycelim-mat formation characteristics of mutant strains by gamma-ray treatment (감마선 처리에 의한 변이주의 배양 및 균막형성 특성)

  • Kim, Hyoun-Suk;Oh, Chan-Jin;Jeong, Kwang-Ju;Choi, Moon-Hee;Shin, Hyun-Jae;Oh, Deuk-Sil
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.393-397
    • /
    • 2020
  • Mycelium composites and leathers have versatile material properties based on their composition and manufacturing process. To prepare mycelium mat for the production of mushroom leather, several strains were mutated by gamma rays. Some mutant strains, including Lentinula edodes, Ganoderma lucidium, and Schizophyllum commune showed good hyphae growth rate and density on saw-dust media. Irradiation power (Gy), time, and height from the radiation source to the sample were examined. Based on the preliminary data obtained in this study, comprehensive research should be conducted to explore the optimal strains and culture conditions for mycelium-based leather production.

Study on the Characteristic of Elastomer Composite Containing Tungsten Powder

  • Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.6-11
    • /
    • 2021
  • In order to develop an ultra-high-density elastomeric material for substitution of steel dynamic dampers, a new curing system and technique for high-loading of the filler were examined in this study. Mechanochemical modification of chloroprene rubber (MAH-g-CR) using an internal mixer was carried out with maleic anhydride (MAH) as a reactive monomer. The optimum amount of MAH was 10 phr and the efficient grafting of MAH on CR could be achieved at a mixing temperature of 100℃. After preparing MAH-g-CR, 50 mol% epoxidized natural rubber (ENR 50) was blended with MAH-g-CR to develop a "self-curable rubber blend system" via reaction between the functional groups of the elastomeric matrices without the curing agent and additives. The content of ENR 50 was fixed at 30 wt.% throughout evaluation of the curing behavior of the MAH-g-CR/ENR blend. Tungsten powder was added to the MAH-g-CR/ENR matrix up to 60 vol.% to obtain ultra-high-density, and the maximum density obtained was 7.57 g/㎤. Stable ts2 (scorch time) and t90 (90% cure time) could be obtained even when tungsten powder was incorporated up to 60 vol.%. In addition, the tensile strength and damping properties of MAH-g-CR/ENR containing 60 vol.% of tungsten were better than those of CR containing 60 vol.% of tungsten.

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin;Kwon, Yong Rok;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.

Modified Graphene Oxide-Based Adsorbents Toward Hybrid Membranes for Organic Dye Removal Application

  • Thi Sinh, Vo;Khin Moe, Lwin;Sun, Choi;Kyunghoon, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.402-411
    • /
    • 2022
  • In this study, the channels-contained hybrid membranes have been fabricated through the incorporation of glass fibers and GO sheets (GO/glass fibers, GG), or a mixture of chitosan/GO (CS/GO/glass fibers, CGG), as hybrid membranes using in organic dye removal. The material properties are well investigated the terms in the morphological, chemical, crystal, and thermal characterizations for verifying interactions in their formed structure. These hybrid membranes have been fitted well in pseudo-second order and Langmuir models that are associated with chemical adsorption and a monolayer approach, respectively. The highest adsorption ability of methylene blue and methyl orange reached 59.40 mg/g and 229.07 mg/g (GG); and 287.47 mg/g and 252.91 mg/g (CGG), which is more enhanced than that of previous GO-based other adsorbents. Moreover, the dye separation on these membranes could be favorable to superb sealing and trapping dye molecules from water instead of only the dye connection occurring on their surface, regarding the physically sieving effect. The membranes can also be reused within two and three adsorbing-desorbing cycles on the GG and CGG ones, respectively. These membranes can become future adsorbents to be applied for wastewater treatment due to their structural features.

Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites

  • Gokmen, Ugur
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1049-1061
    • /
    • 2022
  • Neutron and gamma-ray shielding properties of Inconel 718 reinforced B4C (0-25 wt%) were investigated using PSD software. Mean free path (MFP), linear and mass attenuation coefficients (LAC,MAC), tenth-value and half-value layers (TVL,HVL), effective atomic number (Zeff), exposure buildup factors (EBF), and fast neutron removal cross-sections (FNRC) values were calculated for 0.015-15 MeV. It was found that MAC and LAC increased with the decrease in the content of B4C compound by weight in Inconel 718. The EBFs were computed using G-P fitting method for 0.015-15 MeV up to the penetration depth of 40 mfp. HVL, TVL, and FNRC values were found to range between 0.018 cm and 3.6 cm, between 2.46 cm and 12.087 cm, and between 0.159 cm-1 and 0.194 cm-1, respectively. While Inconel 718 provides the maximum photon shielding property since it offered the highest values of MAC and Zeff and the lowest value of HVL, Inconel 718 with B4C(25 wt%) was observed to provide the best shielding material for neutron since it offered the highest FNRC value. The study is original in terms of several aspects; moreover, the results of the study may be used in nuclear technology, as well as other technologies including nano and space technologies.

Facile Electrodeposition Technique for the Fabrication of MoP Cathode for Supercapacitor Application

  • Samanta, Prakas;Ghosh, Souvik;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.345-349
    • /
    • 2021
  • The continued environmental pollution caused by fossil fuel consumption has prompted researchers around the world to develop environmentally friendly energy technologies. Electrochemical energy storage is the significant area of research in this development process, and the research significance of supercapacitors in this field is increasing. Herein, a simple electrodeposition synthetic route was explored to develop the MoP layered cathode material. The layered structure provided a highly ion-accessible surface for smooth and faster ion adsorption/desorption. After Fe was doped into MoP, the morphology of MoP changes and the electrochemical performance was significantly improved. Specific capacitance value of the binder-free FeMoP electrode was found to be 269 F g-1 at 2 A g-1 current density in 6 M aqueous KOH electrolyte. After adding Fe to MoP, an additional redox contribution was observed in the redox conversion from Fe3+ to Fe2+ redox pair, and the charge transfer kinetics of MoP was effectively improved. This research can provide guidance for the development of supercapacitor electrode materials through simple electrodeposition technology.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

Isogeometric analysis of FG polymer nanocomposite plates reinforced with reduced graphene oxide using MCST

  • Farzam, Amir;Hassani, Behrooz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.69-93
    • /
    • 2022
  • Reduced graphene oxide (rGO) is one of the derivatives of graphene, which has drawn some experimental research interests in recent years however, numerical research studying the mechanical behaviors of composites made of rGO has not been taken into consideration yet. The objective of this research is to investigate the buckling, and free vibration of functionally graded reduced graphene oxide reinforced nanocomposite (FG rGORC) plates employing isogeometric analysis (IGA). The effective Young's modulus of rGORC is determined based onthe Halpin-Tsai model. Four different FG distribution types of rGO are considered varying across plate thickness. Besides, the refined plate theory is used based on Reddy's third-order function. To capture the size effect, modified couple stress theory (MCST) is employed. A comprehensive study is provided examining the effect of various parameters including rGO weight fraction, FG distribution types, boundary conditions, material length scale parameter, etc. Our obtained results show that the addition of only 1% of uniformly distributed rGO into epoxy plates leads to the fundamental frequency and critical buckling load 18% and 39% higher than those of pure epoxy plates, respectively.

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.