Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.028

Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites  

Gokmen, Ugur (Gazi University, Faculty of Technology, Department of Metallurgical and Materials Engineering)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 1049-1061 More about this Journal
Abstract
Neutron and gamma-ray shielding properties of Inconel 718 reinforced B4C (0-25 wt%) were investigated using PSD software. Mean free path (MFP), linear and mass attenuation coefficients (LAC,MAC), tenth-value and half-value layers (TVL,HVL), effective atomic number (Zeff), exposure buildup factors (EBF), and fast neutron removal cross-sections (FNRC) values were calculated for 0.015-15 MeV. It was found that MAC and LAC increased with the decrease in the content of B4C compound by weight in Inconel 718. The EBFs were computed using G-P fitting method for 0.015-15 MeV up to the penetration depth of 40 mfp. HVL, TVL, and FNRC values were found to range between 0.018 cm and 3.6 cm, between 2.46 cm and 12.087 cm, and between 0.159 cm-1 and 0.194 cm-1, respectively. While Inconel 718 provides the maximum photon shielding property since it offered the highest values of MAC and Zeff and the lowest value of HVL, Inconel 718 with B4C(25 wt%) was observed to provide the best shielding material for neutron since it offered the highest FNRC value. The study is original in terms of several aspects; moreover, the results of the study may be used in nuclear technology, as well as other technologies including nano and space technologies.
Keywords
Inconel 718; Superalloy; $B_4C$; Radiation attenuation properties; Neutron removal cross-section;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 E.R. Atta, K.M. Zakaria, A.M. Madbouly, Study on polymer clay layered nanocomposites as shielding materials for ionizing radiation, Int. J. Recent Sci. Res. 6 (2015) 4263-4264.
2 M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, A.M.I. Shams, Gamma-ray shielding properties of SLSeZnO glasses, J. Mater. Sci. Mater. Electron. (2016), https://doi.org/10.1007/s10854-016-6022-z.   DOI
3 A.B. Chilten, J.K. Shultis, R.E. Faw, Principle of Radiation Shielding, Prentice-Hall, Englewood Cliffs, N.J., 1984.
4 H. Youhua, L. Yimin, H. Hao, L. Jia, T. Xiao, Preparation and mechanical properties of Inconel 718 alloy by metal injection molding, Rare Met. Mater. Eng. 39 (5) (2010) 775-780.   DOI
5 A.B. Chilton, C.M. Eisenhauer, G.L. Simmons, Photon point source buildup factors for air, water, and iron, Nucl. Sci. Eng. 73 (1980) 97-107.   DOI
6 K. Takeuchi, S. Tanaka, PALLAS-ID (VII). A code for direct integration of transport equation in one-dimensional plane and spherical geometries, JAERIM 84 (1984) 214.
7 V.P. Singh, M.E. Medhat, N.M. Badiger, A.Z.M. Rahman, Radiation shielding effectiveness of newly developed superconductors, Radiat. Phys. Chem. 175-183 (2015).
8 P.S. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, Ann. Nucl. Energy 35 (2008) 1093-1097.   DOI
9 T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy 113 (2019) 95-113.   DOI
10 J. Miao, T.M. Pollock, J.W. Jones, Crystallographic fatigue crack initiation in nickel-based superalloy Rene 88DT at elevated temperature, Acta Mater. 57 (20) (2009) 5964-5974.   DOI
11 Z. Xu, Y. Xie, M. Ebrahimnia, H. Dang, Effect of B4C nanoparticles on microstructure and properties of laser cladded IN625 coating, Surf. Coating. Technol. 416 (2021) 127154.   DOI
12 F. Akman, I. Ozkan, M.R. Kacal, H. Polat, S.A.M. Issa, H.O. Tekin, O. Agar, Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites, Appl. Radiat. Isot. (2021), https://doi.org/10.1016/j.apradiso.2020.109470.   DOI
13 G. Kilic, S.A.M. Issa, E. Ilik, O. Kilicoglu, H.O. Tekin, A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: synthesis, optical, physical and nuclear radiation shielding properties, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.09.103.   DOI
14 M.F. Kaplan, Concrete Radiation Shielding, Longman scientific and Technology, Lonman Group UK, Limited, Essex, England., 1989.
15 A. Simchi, Densification, and microstructural evolution during co-sintering of Ni-base superalloy powders, Metall. Mater. Trans. 37 (8) (2006) 2549-2557.   DOI
16 J.R. Hayes, J.J. Gray, A.W. Szmodis, C.A. Orme, Influence of chromium and molybdenum on the corrosion of nickel-based alloys, Corrosion 62 (6) (2006) 491-500.   DOI
17 A. Suzuki, F. Wu, H. Murakami, H. Imai, High temperature characteristics of IreTa coated and aluminized Ni-base single crystal superalloys, Sci. Technol. Adv. Mater. 5 (5-6) (2004) 555.   DOI
18 W.R. Nelson, H. Hirayama, D.W.O. Rogers, EGS4 Code System, SLAC-265, Stanford Linear Accelerator Centre, Stanford, California, 1985.
19 A. Asli, K. Esra, D. Ridvan, Neutron and photon shielding competences of aluminum open-cell foams filled with different epoxy mixtures: an experimental study, Radiat. Phys. Chem. 182 (2021) 109382.   DOI
20 O. Icelli, S. Erzeneoglu, M. Saglam, Effective atomic numbers of polypyrrolevia transmission method in the energy range 15.74-40.93 keV, Ann. Nucl. Energy 35 (2008) 432-437.   DOI
21 V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons, Glass Phys. Chem. 3 (2015), 267-283.
22 M. Kurudirek, Y. Ozdemir, A comprehensive study on energy absorption and exposure buildup factors for some essential amino acids and carbohydrates in the energy range 0.0015-15 MeV up to 40 mean free path, Nucl. Instrum. Methods Phys. Res. B 269 (2011) 7-19.   DOI
23 V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiat. Phys. Chem. 98 (14-2) (1 2014).   DOI
24 I. Han, L. Demir, M. Sahin, Determination of mass attenuation coefficients, effective atomic and electron numbers for some natural minerals, Radiat. Phys. Chem. 78 (2009) 760-764.   DOI
25 Proceedings of the CASeCERN accelerator school: beam injection, extraction and transfer, erice, Italy, 10-19 March, in: B. Holzer (Ed.), CERN Yellow Reports: School Proceedings, 5/2018, 2017. CERN-2018-008-SP (CERN, Geneva, 2018) Particle Interactions with Matter A. Lechner.
26 I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Gamma-ray shielding properties of concrete including barite at different energies, Prog. Nucl. Energy 52 (2010) 620-623.   DOI
27 G.L. Simmons, An Adjoint Gamma-Ray Moments Computer Code, ADJMOMI.NBS Technical Note 748, National Bureau of Standards, 1973.
28 Y.I. Lee, N.Y. Kwon, S.T. Oh, Fabrication of Fe-base superalloy powders with yttrium oxide dispersion by mechanical alloying and chemical route, Mater. Lett. 197 (2017) 135-138.   DOI
29 M. Xia, D. Gu, C. Ma, H. Chen, H. Zhang, Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting, J. Alloys Compd. 747 (2018) 684-695.   DOI
30 V.R.K. Murty, D.P. Winkoun, K.R.S. Devan, Effective atomic numbers for W/Cu alloy using transmission experiments, Appl. Radiat. Isot. 53 (2000) 945-948.   DOI
31 D. Mengge, X. Xiangxin, Y. He, L. Zhefu, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties, Radiat. Phys. Chem. 141 (2017) 239-244.   DOI
32 T. Korkut, H. Korkut, A. Karabulut, G. Budak, A new radiation shielding material: amethyst ore, Ann. Nucl. Energy 38 (2011) 56-59.   DOI
33 S. Erzeneoglu, O. Icelli, B. Gurbulak, A. Ates, Measurement of mass attenuation coefficients for holmium doped and undoped layered semiconductors InSe at different energies and the validity of mixture rule for crystals around the absorption edge, J. Quant. Spectrosc. Radiat. Transfer 102 (2006) 343-347.   DOI
34 S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods Phys. Res., Sect. B 266 (2008) 3906-3912.   DOI
35 A. El-Sayed, M.A.M. Ali, M.R. Ismail, Natural fibre high-density poly-ethylene and lead oxide composites for radiation shielding, Radiat. Phys. Chem. 66 (2003) 185-195.   DOI
36 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, X-ray absorption in matter, Reengineering XCOM. J. Radiat. Phys. Chem. 60 (2001) 23-24.   DOI
37 J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, T. Kittiauchawal, W. Chewpraditkul, P. Limsuwan, Measurement of mass attenuation coefficients of blue sapphire at different photon energy by Compton scattering technique, Appl. Mech. Mater. 103 (2012) 71-75.   DOI
38 S.R. Manohara, S.M. Hanagodimath, Effective atomic numbers for photon energy absorption of essential amino acids in the energy range 1-20 MeV, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 264 (2007) 9-14.   DOI
39 A.A. Yar, M. Montazerian, H. Abdizadeh, H.R. Baharvandi, Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO, J. Alloys Compd. 484 (1-2) (2009) 400-404.   DOI
40 B. Buyuk, A.B. Tugrul, S. Aktop, A.O. Addemir, Investigation on the effects of boron carbide particle size on radiation shielding properties of boron carbide-titanium diboride composites, Acta Phys. Pol. A 123 (2013) 177-179.   DOI
41 B. Buyuk, A.B. Tugrul, A.C. Akarsu, A.O. Addemir, Investigation on the effects of titanium diboride particle size on radiation shielding properties of titanium diboride reinforced boron carbide-silicon carbide composites, J. Nano Electron. Phys. 4 (2012a), 01010-01013.
42 M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, Imheidat Mohammad A, A. Fatimh, A. Muna, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples, Optik 239 (2021) 166790.   DOI
43 K. Umanath, K. Palani Kumar, S.T. Selvamani, Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites, Compos. B Eng. 53 (2013) 159-168.   DOI
44 S. Karabulut, U. Gokmen, H. Cinici, Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles, Compos. B Eng. 93 (2016) 43-55.   DOI
45 A. Levet, E. Kavaz, Y. Ozdemir, An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, J. Alloys Compd. 819 (2020) 152946.   DOI
46 A. Uzun, E. Asikuzun, U. Gokmen, H. Cinici, Vickers microhardness studies on B4C reinforced/unreinforced foamable aluminium composites, Trans. Indian Inst. Met. 71 (2) (2018) 327-337.   DOI
47 B. Buyuk, A.B. Tugrul, A.C. Akarsu, A.O. Addemir, Investigation of behaviour of titanium diboride reinforced boron carbide-silicon carbide composites against Cs-137 gamma radioisotope source by using gamma transmission technique, Acta Phys. Pol. A 121 (2012b) 135-137.   DOI
48 Y. Harima, An approximation of gamma buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83 (1983) 299-309.   DOI
49 Y. Harima, Y. Sakamoto, S. Tonaka, M. Kawai, Validity of the geometric progression formula in approximating gamma-ray buildup factors, Nucl. Sci. Eng. 94 (24) (1986).
50 ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society, La GrangePark, IL, USA, 1991.
51 U. Kaur, J.K. Sharma, P.S. Singh, T. Singh, Comparative studies of different concretes on the basis of some photon interaction parameters, Appl. Radiat. Isot. 70 (2012) 233-240.   DOI
52 D. Mengge, X. Xiangxin, He, L. Dong, W. Chao, L. Zhefu, A novel comprehensive utilization of vanadium slag: as gamma ray shielding material, J. Hazard Mater. 318 (2016) 751-757.   DOI
53 M.I. Sayyed, H.A. Aljawhara, K. Ashok, J.F.M. Jecong, I. Akkurt, Optical, mechanical properties of TeO2-CdO-PbO-B2O3 glass systems and radiation shielding investigation using EPICS2017 library, Optik 242 (2021) 167342.   DOI
54 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXcom-a program for calculating X-ray attenuation coefficients, J. Radiat. Phys. Chem. 71 (2004) 653-654.   DOI
55 Y. Harima, An historical review and current status of buildup factor calculations and application, Radiat. Phys. Chem. 41 (4/5) (1993) 631-672.   DOI
56 O. Ozgun, H.O. Gulsoy, R. Yilmaz, F. Findik, Microstructural and mechanical characterization of injection molded 718 superalloy powders, J. Alloys Compd. 576 (2013) 140-153.   DOI
57 T.A.A. Junior, M.S. Nogueira, V. Vivolo, M.P.A. Potiens, L.L. Campos, Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation, Radiat. Phys. Chem. 140 (2017) 349-354.   DOI
58 E. Sakara, F.O. Ozpola, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020), 108496.   DOI
59 B. Aygun, G. Budak, A new neutron absorber material: oil loaded paraffin wax, Nucl. Sci. Technol. (2012).
60 U. Cevik, H. Baltas, Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 256 (2007) 619-625.   DOI
61 B. Alaylar, B. Aygun, K. Turhan, G. Karadayi, S. Erdem, V.P.S. Akar, M.I. Sayyed, E. Pelit, A. Karabulut, M. Gulluce, Z. Turgut, M. Isaoglu, Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential, Radiat. Phys. Chem. 184 (2021) 109471.   DOI
62 U. Gokmen, Fabrication and characterization of hot extruded hybrid composites Al 2024 matrix reinforced with B4C/Al2O3, J. Polytech. 19 (4) (2016) 445-453.
63 S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application, Radiat. Phys. Chem. 160 (2019) 41-47.   DOI
64 H.O. Tekin, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses, Ceram. Int. 45 (2019) 9934-9949.   DOI
65 G.S. Bhandal, K. Singh, Photon attenuation coefficient and effective atomic number study of cement, Appl. Radiat. Isot. 44 (1993) 1231-1243.   DOI
66 J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, Determination of effective atomic numbers and effective electron densities of Cu/Zn alloy, J. Quant. Spectrosc. Radiat. Transf. 109 (2008) 1260-1265.   DOI
67 I. Han, L. Demir, Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe, and Ni alloys at different energies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (2009) 3-8.   DOI
68 E. Yilmaz, H. Baltas, E. Kiris, _I. Ustabas, U. Cevik, A.M. El-Khayatt, Gamma-ray and neutron shielding properties of some concrete materials, Ann. Nucl. Energy 38 (2011) 2204-2212.   DOI
69 D. Mengge, Z. Suying, X. Xiangxin, F. Xiating, M.I. Sayyed, U. Mayeen, D.A.B. Khandaker, The potential use of boron containing resources for protection against nuclear radiation, Radiat. Phys. Chem. 188 (2021) 109601.   DOI