• Title/Summary/Keyword: Composite target

Search Result 258, Processing Time 0.034 seconds

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF

Pulsed Laser Deposition of $CuIn_{1-x}M_xO_2$(M=Ca, Mg, or Ti) Thin Films for Transparent Conducting Oxide

  • Lee, Jong-Cheol;Eom, Se-Yeong;Heo, Yeong-U;Lee, Jun-Hyeong;Kim, Jeong-Ju
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.103-104
    • /
    • 2007
  • $CuInO_2$ 단일상은 합성조건이 매우 까다롭기 때문에 일반적인 고상법으로 얻기 힘든 것으로 알려저 있다. 투명전도성 $CuInO_2$ 박막을 증착하기 위하여 일반적인 고상법으로 Cu와 In의 비율이 1:1인 $Cu_2O-In_2O_3$ composite target 및 In 대신 Ca, Mg, Ti가 각각 1mol% 도핑된 target을 제작하였다. 제작된 각각의 composite target을 이용하여 pulsed laser deposition(PLD) 공정으로 투명전도성 $CuInO_2$ 박막을 증착하였다. Cu와 In이 1:1 인 $Cu_2O-In_2O_3$ composite target을 사용한 경우, 증착된 박막이 Cu와 In의 비율이 1:1인 c-axis 배향된 단일상의 $CuInO_2$ 박막임을 확인하였다.

  • PDF

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.

Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study

  • Rezaei, Mohammad Javad;Gerdooei, Mahdi;Nosrati, Hasan Ghaforian
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.737-745
    • /
    • 2020
  • Nowadays, composite plates are widely used as high-strength structures to fabricate a dynamic loading-resistant armours. In this study, the shock load is applied by an explosion of spherical TNT charge at a specified distance from the circular composite plate. The composite plate contains a two-layer ceramic-metal armour and a poly-methyl methacrylate (PMMA) target layer. The dynamic behavior of the composite armour has been investigated by measuring the transferred effective stress and maximum deflection into the target layer. For this purpose, the simulation of the blast loading upon the composite structure was performed by using the load-blast enhanced (LBE) procedure in Ls-Dyna software. The effect of main process parameters such as the thickness of layers, and scaled distance has been examined on the specific stiffness of the structure using response surface method. After validating the results by comparing with the experimental results, the optimal values for these parameters along with the regression equations for transferred effective stress and displacement to the target have been obtained. Finally, the optimal values of input parameters have been specified to achieve minimum transferred stress and displacement, simultaneously with reducing the weight of the structure.

SIMS analysis of the behavior of boron implanted into single silicon during the Ti-silicide formation (Ti-silicide 박막 형성시 규소 기판에 이온 주입된 붕소 거동에 대한 SIMS 분석)

  • Hwang, Yoo Sang;Paek, Su Hyon;Cho, Hyun Choon;Mah, Jae Pyung;Choi, Jin Seog;Kang, Sung Gun
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.199-202
    • /
    • 1992
  • Ti-silicide was formed by using metal-Ti target and composite target on the silicon substrate that $BF_2$ were introduced into. Implant energies of $BF_2$ were 50keV and 90keV. The behavior of boron was investigated by SIMS. The redistribution of boron occurred during the formation of Ti-silicide by metal-Ti target and the sample implanted at the energy of 50keV showed severe out-diffusion. In the case that Ti-silicide was formed by composite target, there was little redistribution of boron.

  • PDF

Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings (저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가)

  • Byun, GyeongJun;Kim, JaeIck;Lee, Changhee;Kim, SeeJo;Lee, Seong
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.

Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding (고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성)

  • Yeo, Ki-Ho;Park, Eun-Soo;Lee, Han-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

Evaluation of Partial Safety Factors on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Kwon, Hyuk-Jae;Lee, Sun-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.267-277
    • /
    • 2009
  • Partial safety factors of the load, resistance, and reliability function are evaluated according to the target probability of failure on sliding mode of monolithical vertical caisson of composite breakwaters. After reliability function is formulated for sliding failure mode of caisson of composite breakwaters regarding bias of wave force, uncertainties of random variables related to loads, strengths are analyzed. Reliability analysis for the various conditions of water depth, geometric, and wave conditions is performed using Level II AFDA model for the sliding failure. Furthermore, the reliability model is also applied to the real caisson of composite breakwaters of Daesan, Dong- hae, and Pohang harbor. By comparing the required width of caisson of composite breakwater according to target probability of failure with the other results, the partial safety factors evaluated in this study are calibrated straightforwardly. Even though showing a little difference on the 1% of target probability, it may be found that the present results agree well with the other results in every other target probability of failure.

Studies on Thickness Swelling Mechanism of Wood Particle-Polypropylene Fiber Composite by Scanning Electron Microscopy

  • Lee, Chan Ho;Cha, Jae Kyung;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.48-58
    • /
    • 2002
  • This study was carried out through scanning electron microscopy to elucidate the mechanism of thickness swelling in wood particle-polypropylene composite which is a typical way of using wood and plastic materials. For this purpose, control particleboards and nonwoven web composites from wood particle and polypropylene fiber formulations of 100:0, 70:30, 60:40, and 50:50 were manufactured at target density levels of 0.5, 0.6, 0.7, and 0.8 g/cm3. Their water absorption and thickness swelling were tested according to ASTMD 1037-93 (1995). To elucidate thickness swelling mechanism of composite through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. From the scanning electron microscopy, thickness swelling of composite was thought to be caused by the complicated factors of degree of built-up internal stresses by mat compression and/or amount of wood particles encapsulated with molten polypropylene fibers during hot pressing. In the composites with wood particle contents of 50 to 60% at target densities of 0.5 to 0.8 g/cm3 and with wood particle content of 70% at target densities of 0.5 to 0.7 g/cm3, thickness swellings seemed to be largely dependent upon the restricted water uptake by encapsulated wood particles with molten polypropylene fibers. Thickness swelling in the composite with wood particle content of 70% at target density of 0.8 g/cm3, however, was thought to be principally dependent upon the increased springback phenomenon by built-up internal stresses of compressed mat.

An Image Composition Technique using Water-Wave Image Analysis (물결영상 분석을 통한 이미지 합성기법에 관한 연구)

  • Li, Xianji;Kim, Jung-A;Ming, Shi-Hwa;Kim, Dong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.193-202
    • /
    • 2008
  • In this study, we want to composite the source image and the target image when the environment includes water surface in the target image such as lake, sea, etc. The water surface is different from other common environment. On the water surface, the object must be reflected or refract and sometimes is deformed by the wave of water. In order to composite the object in the source image onto the water image, we analyze the water surface of the target image and let the object be synthesized realistically based on the wave of water. Our composite process consists of three steps. First. we use Shape-from-Shading technique to extract the normal vector of the water surface in the target image. Next, the source image is deformed according to the normal vector map. Finally, we composite the deformed object onto the target image.

  • PDF