• 제목/요약/키워드: Composite number

검색결과 1,282건 처리시간 0.027초

다목적 소형 승합차 복합재 판 스프링의 적층 최적화 기법 (Optimal Methodology of a Composite Leaf Spring with a Multipurpose Small Commercial Vans)

  • 안상호
    • 한국전산구조공학회논문집
    • /
    • 제31권5호
    • /
    • pp.243-250
    • /
    • 2018
  • 본 논문에서는 복합재 판 스프링의 설계 최적화를 위해 유전자 알고리즘을 사용한 적층 최적화 과정을 제시하였다. 다목적 소형 승합 자동차 판 스프링을 유한요소모델로 구성하여 초기 설계를 검증한 이후, 유전자 알고리즘을 통해 복합재료의 적층수와 적층각도를 최적화하는 과정을 기술하였다. 최적화 과정을 통해 판 스프링의 하중 감소과정, 반복수에 따라 강 구조의 해석 결과와 비교하였다. 더불어 유전자 알고리즘을 통해 최적화된 적층 시퀀스를 구조에 적용하여 구조의 건전성을 검증하기 위해 유한요소 모델로 구성하여 안전여유를 계산하였다. GA를 적용할 때, 복합재료 판 스프링의 적층 두께와 적층 각을 획득하였으며, 이는 적절한 강도와 강성으로 최소 무게를 달성하는데 기여한다. 동일한 설계 매개 변수 및 최적화 조건에서 강철된 판 스프링을 복합재 판 스프링으로 교체하면 65.6%의 중량이 감소한다.

Thermal buckling analysis of thick anisotropic composite plates by finite strip method

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.473-484
    • /
    • 1999
  • In the present study, the thermal buckling analysis of thick anisotropic laminated composite plates is carried out using the finite strip method based on the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. Therefore, this theory yields improved results over the Mindlin plate theory and eliminates the need for shear correction factors in calculating the transverse shear stiffness. The critical temperatures of simply supported rectangular cross-ply and angle-ply composite laminates are calculated. The effects of several parameters, such as the aspect ratio, the length-to-thickness ratio, the number of plies, fibre orientation and stacking sequence, are investigated.

Bending performance of laminated sandwich shells in hyperbolic paraboloidal form

  • Alankaya, Veysel;Erdonmez, Cengiz
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.337-346
    • /
    • 2017
  • Sandwich shells made of composite materials are the main focus on recent literature parallel to the requirements of industry. They are commonly chosen for the modern engineering applications which require moderate strength to weight ratio without dependence on conventional manufacturing techniques. The investigations on hyperbolic paraboloidal formed sandwich composite shells are limited in the literature contrary to shells that have a number of studies, consisting of doubly curved surfaces, arbitrary boundaries and laminations. Because of the lack of contributive data in the literature, the aim of this study is to present the effects of curvature on hyperbolic paraboloidal formed, layered sandwich composite surfaces that have arbitrary boundary conditions. Analytical solution methodology for the analyses of stresses and deformations is based on Third Order Shear Deformation Theory (TSDT). Double Fourier series, which are specialized for boundary discontinuity, are used to solve highly coupled linear partial differential equations. Numerical solutions showing the effects of shell geometry are presented to provide benchmark results.

기지균열의 밀도증가를 예측하기 위한 이론적 모형 (A Theoretical Model for Predicting Matrix Crack Density Growth)

  • 이종원;김진원;김응태;안석민
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.203-206
    • /
    • 2002
  • The present study proposes a theoretical model for predicting the matrix crack density growth of each layer in composite laminates subjected to thermo-mechanical loads. Each layer with matrix cracks is treated as an equivalent continuum of degraded elastic stiffnesses which are functions of the matrix crack density in each slyer. The energy release rate as a function of the degraded elastic stiffnesses is then calculated for each layer as functions of thermo-mechanical loads externally applied to the laminate. The matrix crack densities of each layer in general laminates are predicted as functions of the thermo-mechanical loads applied to a number of laminates. Comparisons of the present study with experimental data in the open literatures are also provided.

  • PDF

Optimization of Composite Laminates Subjected to High Velocity Impact Using a Genetic Algorithm

  • Nguyen, Khanh-Hung;Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.227-233
    • /
    • 2010
  • In this study, a genetic algorithm was utilized to optimize the stacking sequence of a composite plate subjected to a high velocity impact. The aim is to minimize the maximum backplane displacement of the plate. In the finite element model, we idealized the impactor using solid elements and modeled the composite plate by shell elements to reduce the analysis time. Various tests were carried out to investigate the effect of parameters in the genetic algorithm such as the type of variables, population size, number of discrete variables, and mutation probability.

Multi-objective optimal design of laminate composite shells and stiffened shells

  • Lakshmi, K.;Rama Mohan Rao, A.
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.771-794
    • /
    • 2012
  • This paper presents a multi-objective evolutionary algorithm for combinatorial optimisation and applied for design optimisation of fiber reinforced composite structures. The proposed algorithm closely follows the implementation of Pareto Archive Evolutionary strategy (PAES) proposed in the literature. The modifications suggested include a customized neighbourhood search algorithm in place of mutation operator to improve intensification mechanism and a cross over operator to improve diversification mechanism. Further, an external archive is maintained to collect the historical Pareto optimal solutions. The design constraints are handled in this paper by treating them as additional objectives. Numerical studies have been carried out by solving a hybrid fiber reinforced laminate composite cylindrical shell, stiffened composite cylindrical shell and pressure vessel with varied number of design objectives. The studies presented in this paper clearly indicate that well spread Pareto optimal solutions can be obtained employing the proposed algorithm.

Incorporating Station Related Aging Failures in Bulk System Reliability Analysis

  • Billinton Roy;Yang Hua
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.322-330
    • /
    • 2005
  • This paper proposes methods to incorporate station related aging failures in composite system reliability assessment. Aging failures of station components, such as circuit breakers and bus bars, are a major concern in composite power system planning and operation as an increasing number of station components approach the wear-out phase. This paper presents probabilistic models for circuit breakers involving aging failures and relevant evaluation techniques to examine the effects of station related aging outages. The technique developed to incorporate station related aging failures are illustrated by application to a small composite test system. The paper illustrates the effects of circuit breaker aging outages on bulk system reliability evaluation and examines the relative effects of variations in component age. System sensitivity analysis is illustrated by varying selected component parameters. The results show the implications of including component aging failure considerations in the overall analysis of a composite system.

가중치를 갖는 복합 파지 지수를 기반으로 한 물체의 파지 계획 (Optimal Grasp Planning of Object Based on Weighted Composite Grasp Index)

  • 김병호;이병주;오상록;서일홍
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.1003-1012
    • /
    • 2000
  • When a robot hand grasp an object, the number of ways to grasp it stably are infinite and thus an optimal grasp planning is needed to find the optimal grasp points for satisfying the objective of the given task. In this paper, we first define some grasp indices to evaluate the quality of each feasible grasp and then a weighted composite grasp index by combining all of the grasp indices is also defined. Next, we propose a method to find the optimal grasp points of the given object by comparing the defined weighted composite grasp index for each feasible grasp points. By simulation results, we show the effectiveness of the proposed optimal grasp planning method and also discuss the trend of each grasp index as the grasp polygon.

  • PDF

고차 지그재그 모델을 이용한 다중 층간 분리부가 내재한 복합재 평판의 동적 해석 (Dynamic analysis for delaminated composites using DKQ concept based on higher-order zig-zag theory)

  • 오진호;조맹효;김준식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2002
  • A higher-order zig-zag theory is developed to refine the predictions of natural frequency and mode shape of laminated composite plates with multiple delaminations. By imposing top and bottom surface transverse shear stress-free and interface continuity conditions of transverse shear stresses including delaminated interfaces, the displacement field with minimal degree-of-freedoms are obtained. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Through the dynamic version of variational approach, the dynamic equilibriums and variationally consistent boundary conditions are obtained. Through the numerical example of natural frequency analysis, the accuracy and efficiency of present theory are demonstrated. The present theory is suitable as an efficient tool to analyze the static and dynamic behavior of the composite plates with multiple delaminations.

  • PDF

The Influence of the Aspect Ratio on the Composite Material Bridge Deck Structures

  • Han, Bong-Koo
    • Composites Research
    • /
    • 제27권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Theories for composite material structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates, the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the author. Most of the bridge deck structures on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms $M_x$ on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.