• Title/Summary/Keyword: Composite cylindrical structure

Search Result 81, Processing Time 0.03 seconds

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu;Nan Zheng;Yaohuan Wu;Quan Yang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.571-578
    • /
    • 2024
  • The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.

Modal Characteristics and Vibration Control of Cylindrical Shell Structure : Experimental Results Comparison in the Air and Water (실린더형 셸 구조물의 모드 특성 및 진동제어 : 공기중 및 수중 실험결과 비교)

  • Sohn, Jung-Woo;Kwon, Oh-Cheol;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.899-906
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and macro-fiber composite(MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

Manufacturing Processes of Cylindrical Composite Lattice Structures using Filament Winding Method (필라멘트 와인딩 공법을 이용한 원통형 복합재 격자구조체 제작 공정)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo;Son, Johwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.835-837
    • /
    • 2017
  • In this paper, manufacturing processes of cylindrical composite lattice structures using filament winding method was described. Cylindrical composite lattice structures were manufactured in accordance with four major steps. Silicon mold of lattice shape was installed on mandrel and then continuous fiber was wound on silicon mold. After winding process, in order to ensure the same thickness for all regions, compression process was done for its intersection parts. Finally, the composite lattice structure was demoulded after curing in oven. It was found that the manufactured cylindrical composites lattice structure had 2.4% of dimensional error compared to the design requirements.

  • PDF

Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures (원통형 복합재 격자구조체의 구조안전성 평가 기법 연구)

  • Im, Jae-Moon;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.338-342
    • /
    • 2017
  • In this paper, evaluation method of structural integrity of cylindrical composite lattice structures was conducted. A finite element analysis was used to evaluate the structural integrity of composite lattice structures. In order to verify the optimal finite element in the evaluation of the structural integrity, finite element models for cylindrical composite lattice structure were generated using beam, shell and solid elements. The results of the finite element analyses with the shell and solid element models showed a good agreement. However, considerable differences were found between the beam element model and the shell and solid models. This occurred because the beam element does not take into account the degradation of the mechanical properties of the non-intersection parts of cylindrical composite lattice structures. It was found that the finite element analysis of evaluation of structural integrity for cylindrical composite lattice structures have to use solid element.

Radial vibration behaviors of cylindrical composite piezoelectric transducers integrated with functionally graded elastic layer

  • Wang, H.M.;Wei, Y.K.;Xu, Z.X.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.753-765
    • /
    • 2011
  • The radial vibration behaviors of a circular cylindrical composite piezoelectric transducer (CPT) are investigated. The CPT is composed of a piezoelectric ring polarized in the radial direction and an elastic ring graded in power-law variation form along the radial direction. The governing equations for plane stress state problem under the harmonic excitation are derived and the exact solutions for both piezoelectric and functionally graded elastic rings are obtained. The characteristic equations for resonant and anti-resonant frequencies are established. The presented methodology is fit to carry out the parametric investigation for composite piezoelectric transducers (CPTs) with arbitrary thickness in radial direction. With the aid of numerical analysis, the relationship between the radial vibration behaviors of the cylindrical CPT and the material inhomogeneity index of the functionally graded elastic ring as well as the geometric parameters of the CPTs are illustrated and some important features are reported.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Optimal Lamination Design of Composite Cylinders using an Empirical Ultimate Pressure Load Formula (최종강도 경험식을 이용한 복합재 원통구조의 최적적층 설계)

  • Cho, Yoon Sik;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.316-326
    • /
    • 2019
  • In this paper, a methodology is presented for determining the optimal lamination of composite cylindrical structures subject to hydrostatic pressure. The strength criterion in association with the process of optimal design is the buckling collapse of composite cylinders under hydrostatic pressure loads. An empirical formula expressed in the form of the Merchant-Rankine equation is used to calculate the ultimate strength of filament-wound composite cylinders where genetic algorithm is applied for determining the optimized stacking sequences. It is shown that the optimized lamination provides improved collapse pressure loads. It is concluded that the developed method would be useful for the optimal lamination design of composite cylindrical structures.

The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures (두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향)

  • Kong, Seung-Taek;Jeon, Min-Hyeok;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2021
  • In this paper, in order to examine the effect of fiber volume fraction non-uniformity in thickness direction on the buckling load of cylindrical composite lattice structures, we modified the equation of buckling load of the cylindrical composite lattice structures proposed by Vasiliev. The thickness of each layer of the rib was varied by fiber volume fraction, and material properties were applied differently by using the rule of mixture. Also, we performed linear buckling analysis by varying the structure size, thickness, and average value of the fiber volume fraction of finite element model. Finally, by comparing the calculation results of the buckling load of the equivalent model using the modified buckling load equation and the results of the finite element analysis, we found that the fiber volume fraction non-uniformity in thickness direction can reduce the buckling load of the cylindrical composite lattice structure.

A Study on Free Vibration of Steel and Composite Cylindrical Shells with an Oblique Angle (경사단을 갖는 Steel 및 복합재료 원통쉘의 자유진동 특성에 관한 연구)

  • Lee, Jang-Won;Choi, Young-Jin;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.928-933
    • /
    • 2004
  • The vibration characteristic is a primary design factor. The cylindrical shells are used as a primary components of complex structure. also, The cylindrical shells have oblique angle. In this study, The vibrational characteristics of steel and plain wave GFRP cylindrical shell with an oblique end are given by experimental and finite element method. To be find characteristic of the oblique end, the mass of the cylindrical shell is maintained. Natural frequency and mode shapes of isotropic and plain weave composite shells are obtained by modal test. The results are compared with those of the finite element method. The simply supported boundary conditions with bolts along the circumferential direction of the GFRP shell are well achieved. Also, The clamped boundary conditions is applied to the steel specimen. Those are shown to agree well with the analytical results and finite element analysis results.

  • PDF

Design of Cylindrical Composite Shell for Optimal Dimensions (최적 단면 치수를 가지는 복합재료 중공빔의 설계)

  • Chun Heong-Jae;Park Hyuk-Sung;Choi Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.219-226
    • /
    • 2005
  • In this study, the problem formulation and solution technique using genetic algorithms for design optimization of laminate composite cylindrical beam section are presented. The hollow cylindrical beams we usually used in the wheel chair. If the weight of wheel chair is reduced, it will lead to huge improvement in passenger's mobility and comfort. In this context, the replacement of steel by high performance and light weight composite material along with optimal design will be a good contribution in the process of weight reduction of a wheel chair. An artificial genetics approach for the design optimization of hollow cylindrical composite beam is presented. On applying the genetic algorithm, the optimal dimensions of hollow cylindrical composite beams which have equivalent rigidities to those of corresponding hollow cylindrical steel beams are obtained. Also structural analysis is conducted on the entire wheel chair structure incorporating Tsai-Wu failure criteria. The maximum Tsai-Wu failure criteria index is $0.192\times10^{-3}$ which is moth less than value of 1.00 indicating no failure is observed under excessive loading condition. It is found that the substitution of steel by composite material could reduce the weight of wheel chair up to 45%.