Design of Cylindrical Composite Shell for Optimal Dimensions

최적 단면 치수를 가지는 복합재료 중공빔의 설계

  • 전흥재 (연세대학교 공과대학 기계공학과) ;
  • 박혁성 ((주)휴모봇) ;
  • 최용진 (연세대학교 공과대학 기계공학과)
  • Published : 2005.09.01

Abstract

In this study, the problem formulation and solution technique using genetic algorithms for design optimization of laminate composite cylindrical beam section are presented. The hollow cylindrical beams we usually used in the wheel chair. If the weight of wheel chair is reduced, it will lead to huge improvement in passenger's mobility and comfort. In this context, the replacement of steel by high performance and light weight composite material along with optimal design will be a good contribution in the process of weight reduction of a wheel chair. An artificial genetics approach for the design optimization of hollow cylindrical composite beam is presented. On applying the genetic algorithm, the optimal dimensions of hollow cylindrical composite beams which have equivalent rigidities to those of corresponding hollow cylindrical steel beams are obtained. Also structural analysis is conducted on the entire wheel chair structure incorporating Tsai-Wu failure criteria. The maximum Tsai-Wu failure criteria index is $0.192\times10^{-3}$ which is moth less than value of 1.00 indicating no failure is observed under excessive loading condition. It is found that the substitution of steel by composite material could reduce the weight of wheel chair up to 45%.

본 연구에서는 휠체어의 경량화를 위해 기존의 강관으로 제작된 휠체어를 피로파괴 및 손상에 강하고 방진 특성이 우수하며 유지 및 보수가 용이한 복합재료 중공빔으로 구성된 복합재료 휠체어로 대체하기 위하여 복합재료 중공빔 이론과 유전자 알고리즘을 적용하여 최적화된 등가 강성을 가지는 복합재료 중공빔의 최적의 단면 치수를 제시하였다. 제시한 최적의 단면치수를 가지는 복합재료 중공빔으로 구성된 휠체어 전체 구조에 Tsai-Wu 파손이론을 이용해 과하중이 가해지는 경우에 대하여 구조해석을 수행한 결과, 휠체어의 파손 유무를 나타내는 Makimum Tsai-Wu Failure Criteria Index가 파손이 발생하는 1.00보다 현저히 낮은 $0.192\times10^{-3}$을 나타내고 있음을 알 수 있었다. 또한 기존의 강관을 동일한 강성을 가지는 복합재료 증공빔으로 대체하였을 경우 중공빔 중량을 최대 45%감소하는 효과를 얻을 수 있음을 확인할 수 있었다.

Keywords

References

  1. Daniell,I.M., Ishai,O. (1994) Engineering mechanics of composite materials. Oxford University Press
  2. Donell .,L.H.(1933) 'Stability of thin-walled tubes under torsion', NACA Report 479, 1933
  3. Gen,M., Cheng,R. Genetic algorithm and engineering design, John Wiley & Sons
  4. Kam,T.Y., Chang,R.R.(1992) 'Optimum Layup of Thick Laminated Composite Plates for Maximum Stiffness', Engineering Optimazation. 19, pp. 237-249 https://doi.org/10.1080/03052159208941230
  5. Lam,K.Y., Loy,C.T., (1995) Influence of boundary conditions and fibre orientation on the natural frequencies of thin orthotropic laminated cylindrical shells, Composite Structures, 31, pp.2 1-30 https://doi.org/10.1016/0263-8223(94)00054-9
  6. Schmit,L.A.. Farshi,B., (1977) Optimum Design of Laminated Fiber Composite Plates, Int. J. for Numerical Methods in Engineering, 11, pp. 433-445
  7. Whitnev,J .M.(1993) Structural analysis of laminated anisotropic plates, Technomic Publishing Company, Pensylvania
  8. Wu,X., Sun,C.T.(1992) Simplified theory for composite thin-walled beams, AIAA Journal, 30(2), 1992, pp.2945-2951 https://doi.org/10.2514/3.11641