• 제목/요약/키워드: Composite construction

검색결과 1,830건 처리시간 0.027초

중공 PC기둥을 적용한 복합공법의 공사비 분석 (Cost Analysis of Composite Method Using Hollow-PC Column)

  • 박병훈;김재엽
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.71-72
    • /
    • 2016
  • Most of studies on PC method aim at the structural analysis and development of PC members, and studies on the construction management aspect are insufficient. Therefore, this study tries to investigate 'hallow PC column composite method(HPC composite method)' from the viewpoint of construction management and analyze the construction cost of the composite method. On the assumption that each comparative method was applied to the zone, the difference in construction cost between the two methods was analyzed. As a result, HPC composite method increased the initial investment cost because of its factor technology, but reduced transport cost, lifting cost, and installation cost through lightweight columns. This study analyzed only the difference in construction cost of HPC composite method so that it has the limitation in evaluating its economy. Therefore, to evaluate the economy of HPC composite method, it is considered to research more the construction cost of HPC composite method.

  • PDF

복합소재의 건설분야 응용현황과 콘크리트 합성압축부재의 개발 (Application of Composites to Construction Industry and Development of Concrete Filled Composite Compression Member)

  • 이성우;박신전
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.183-188
    • /
    • 1999
  • Due to many advantages of advanced composite materials, research on the application of composites to the construction industry is initiated. In this paper, fabrication methods efficient for infrastructures and application examples of each method are discussed. It also presents the structural characteristics of concrete filled glass fiber reinforced composite tubular member. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface.

  • PDF

Form Follows Function - The Composite Construction and Mixed Structures in Modern Tall Buildings

  • Peng, Liu
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.191-198
    • /
    • 2014
  • The tall building and super tall building has been a common building type in China, with multiple functions and complex geometry. Composite construction is broadly used in tall building structures and constitutes the mixed structure together with concrete and steel constructions. The mixture of the constructions is purposely designed for specific area based on the analysis results to achieve the best cost-effectiveness. New types of composite construction are conceived of by engineers for columns and walls. Material distribution is more flexible and innovative in the structural level and member level. However the reliability of computer model analysis should be verified carefully. Further researches in the design and build of composite construction are necessary to ensure the success of its application. Composite or Mixture Index is suggested to be used as a performance benchmark.

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • 한국재료학회지
    • /
    • 제34권2호
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

NATM Composite 라이닝 공법의 적용성 연구 (Study on Applicability of NATM Composite Lining Method)

  • 마상준;강은구;김동민
    • 한국지반공학회논문집
    • /
    • 제27권12호
    • /
    • pp.69-84
    • /
    • 2011
  • 본 연구에서는 NATM Composite 라이닝 공법을 실제 터널 현장에 도입하기 위한 적용성 연구를 수행하였다. 먼저 고품질 PC 패널을 생산하기 위한 최적의 증기양생 조건을 도출하였으며 터널 화재 시 피해를 최소화하기 위해 화재모형 실험을 수행하여 PC 패널 라이닝의 화재 거동 특성을 고찰하였다. 또한 실제 현장에 시험시공을 수행하여 NATM Composite 라이닝 공법의 시공성과 안정성을 확인하였고, 현장 배수실험을 실시하여 경량기포 모르타르의 배수성능을 검토하였다. 그리고 추후 NATM Composite 라이닝 터널 설계 시 효율적으로 PC 패널 라이닝 수량을 산출 할 수 있도록 PC 패널 최적 조합 프로그램을 개발하였으며 공사비 분석 및 VE 평가를 통해 NATM Composite 라이닝 공법의 경제성을 검토하였다. 본 연구 결과 NATM Composite 라이닝 공법은 국내 터널 현장에 충분한 적용성을 갖는 것으로 판단된다.

작업분석을 통한 합벽거푸집 구성 요소별 작업소요시간에 관한 연구 (Work Time of Basement Composite Wall Form Assembly by Work Time Analysis)

  • 허경무;김명현;김태희;김재엽;김광희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.9-13
    • /
    • 2009
  • Recently, construction in downtown is often done closely at the adjacent building. In this case, underground construction need to Basement Composite Wall(BCW) construction. However, generally, during the construction process of BCW form works have many problems that are narrow working space and inefficient time consuming. Despite of these problems, there was no quantitative research for the work time of BCM assembly. Therefore, in this study, work time of CBW form assembly in underground construction is identified by the work analysis. The results of this study reveal that buttress work of basement form take lots of time in the entire work process of Basement Composite Wall form assembly.

  • PDF

11축 복합센서를 통한 건설기계 효율성 측정 자동화 방안 (Automatic Measurement of Construction Equipment Efficiency Using a 11-Axis Composite Sensor)

  • 권재범;조대구;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.59-60
    • /
    • 2012
  • A large-scale construction project relies much on the efficiency of construction equipment. Therefore, efficient and accurate measurement on the productivity of construction equipment is one of important task in the construction industry. Based on the motivation, this paper proposes a 11-axis composite sensor for an automatic measurement of construction equipment. A 11-axis composite sensor is composed of a gyroscope, geomagnetic and accelerometer sensor for the purpose of real-time motion captures of construction equipment. It is expected that the proposed system can save considerable time, effort and cost of measuring a efficiency of construction equipment.

  • PDF

Experimental studies of circular composite bridge piers for seismic loading

  • Chen, Sheng-Jin;Yang, Kuo-Chen;Lin, K.M.;Wang, C.C.
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.261-273
    • /
    • 2012
  • This study proposes and examines a circular composite bridge pier for seismic resistance. The axial and flexural strengths of the proposed bridge pier are provided by the longitudinal reinforcing bars and the concrete, while the transverse reinforcements used in the conventional reinforced concrete pier are replaced by the steel tube. The shear strength of this composite pier relies on the steel tube and the concrete. This system is similar to the steel jacketing method which strengthens the existing reinforced concrete bridge piers. However, no transverse shear reinforcing bar is used in the proposed composite bridge pier. A series of experimental studies is conducted to investigate the seismic resistant characteristics of the proposed circular composite pier. The effects of the longitudinal reinforcing bars, the shear span-to-diameter ratio, and the thickness of the steel tube on the performance of strength, ductility, and energy dissipation of the proposed pier are discussed. The experimental results show that the strength of the proposed circular composite bridge pier can be predicted accurately by the similar method used in the reinforced concrete piers with minor modification. From these experimental studies, it is found that the proposed circular composite bridge pier not only simplifies the construction work greatly but also provides excellent ductility and energy dissipation capacity under seismic lateral force.

복합신소재 적층판의 강성에 대한 연구 (A Study on the Stiffnesses of the Advanced Composite Laminated Plates)

  • 한봉구;김윤영
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.1-7
    • /
    • 2015
  • Compared with conventional construction materials such as steel and concrete, the advanced composite materials are corrosion-free, light-weight, and when used as construction materials, the construction period can be made less than one-tenth needed for conventional materials. However, because of the difficult theories and formulas, the ordinary construction engineers have difficulties in understanding and calculating formulas needed in construction. In this paper, calculation of the stiffnesses of the advanced composite laminated plates and compared with the result of stiffnesses.

3차원 유한요소법을 이용한 강관합성 말뚝재료의 수평저항력 고찰 (Study on lateral resistance of steel-concrete composite drilled shafts by using 3D FEM)

  • 이주형;신휴성;최상호;박재현;정문경;곽기석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.683-690
    • /
    • 2008
  • Steel-concrete composite columns are popular for superstructures of bridges, and the outside steel attached to the shaft increases the shaft resistance due to confining concrete. In this study, lateral resistance of steel-concrete composite drilled shafts was evaluated quantitatively based on numerical analysis when steel casings are used as structural elements like composite columns. Ultimate lateral resistance of composite drilled shafts with various diameters was numerically calculated through 3D finite element analysis. For that, elasto-plastic model with perfectly plasticity is involved to capture the ultimate load. A commercial FEM program, MIDAS-GTS, is used in this study. Real field conditions of the West Coast, Korea were considered to set up the ground conditions and pile lengths required for this parametric studies. Detailed characteristics of the stress and displacement distributions are evaluated for better understanding the mechanisms of the composite shaft behavior.

  • PDF