DOI QR코드

DOI QR Code

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan (School of Architectural Engineering, Chongqing City Vocational College) ;
  • Xuan Wang (School of Architecture and Construction, Chongqing University of Arts and Sciences)
  • Received : 2023.11.23
  • Accepted : 2024.01.11
  • Published : 2024.02.27

Abstract

The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

Keywords

Acknowledgement

This study was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202003901).

References

  1. U. Ahmed, A. Rashid and Z. Baig, Am. J. Civ. Eng., 9, 138 (2021).
  2. Y. Tsapko, V. Lomaha, O. Bondarenko and M. Sukhanevych, Mater. Sci. Forum, 1038, 531 (2021).
  3. A. Britner, C. Dieu and R. Podleschny, Steel Constr., 14, 250 (2021).
  4. D. C. Ngo, J. Saliba, N. Saiyouri and Z. M. Sbartai, J. Build. Eng., 32, 101553 (2020).
  5. F. Perez-Bustamante, F. Avalos-Belmontes, M. G. RosalesSosa, R. Martinez-Sanchez and R. Perez-Bustamante, Microsc. Microanal., 28, 2792 (2022).
  6. K. Dohda, N. Takatsuji, T. Funazuka and N. Sukunthakan, Defect Diffus. Forum, 414, 133 (2022).
  7. X. Hu, Y. Lin, Z. Cui, H. Xing and B. Zhu, J. Phys.: Conf. Ser., 1649, 012043 (2020).
  8. Y. Wu, J. Phys.: Conf. Ser., 2228, 012024 (2022).
  9. O. P. Abioye, P. O. Atanda, G. A. Osinkolu, A. Abioye, I. Olumor, O. Odunlami and A. S. Afolalu, Proc. Manuf., 35, 1337 (2019).
  10. S. Krymskiy, R. Ilyasov, E. Avtokratova, O. Sitdikov, A. Khazgalieva and M. V. Markushev, J. Metastable Nanocryst. Mater., 31, 35 (2019).
  11. C. Mason, R. I. Rodriguez, D. Z. Avery, B. J. Phillips, B. P. Bernarding, M. B. Williams, S. D. Cobbs, J. B. Jordon and P. G. Allison, Addit. Manuf., 40, 1 (2021).
  12. Y. Wan, M. Zhang, B. Dong and H. Yu, Micro Nano Lett., 15, 474 (2020).
  13. S. N. Valiev, I. G. Ovchinnikov, Y. E. Vasilyev and C. Tao, IOP Conf. Ser.: Mater. Sci. Eng., 463, 032093 (2018).
  14. Q. J. Wen and Z. J. Ren, Structures, 29, 924 (2021).
  15. A. Khaimovich, Y. Erisov, V. Smelov, A. V. Agapovichev, I. Petrov, V. Razzhivin, I. Bobrovskij, V. Kokareva and A. Kuzin, Metals, 11, 172 (2021).
  16. W. Feng, A. Tarakbay, S. A. Memon, W. Tang and H. Cui, Constr. Build. Mater., 289, 123165 (2021).
  17. N. Hutasoit, M. A. Javed, R. Rashid, S. A. Wade and S. Palanisamy, Int. J. Mech. Sci., 204, 106526 (2021).
  18. Fakhri, I. Suprayogi, Y. I. Siregar and Sujianto, J. Phys.: Conf. Ser., 1655, 012143 (2020).
  19. O. V. Andersen, MATEC Web Conf., 199, 10004 (2018).
  20. O. Adeniran, W. Cong, E. Bediako and S. P. Adu, J. Compos. Mater., 56, 1139 (2022).