• Title/Summary/Keyword: Composite Solution

Search Result 1,652, Processing Time 0.029 seconds

Natural Dyeing Absorption Properties of Chitosan and Nano Silver Composite Non-Woven Fabrics -Focus on Chrysanthemum Indicum Linn- (키토산/나노실버 복합섬유 혼방 부직포의 천연염색 염착특성 -감국을 중심으로-)

  • Hong, Byung-Suk;Chu, Young-Ju;Lee, Eun-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.5
    • /
    • pp.775-783
    • /
    • 2010
  • This study examines the dyeability, light fastness, washing fastness, and the antibacterial activity of chitosan and nano silver composite non-woven fabrics dyed with an extracted solution from Chrysanthemum Indicum Linn. The results show that an increase in the chitosan and nano silver percentage resulted in an increase in the $a^*$ values and $b^*$ values; however, the $L^*$ values decreased in the undyed condition. ${\Delta}E$ values of chitosan and nano silver composite non-woven fabrics were higher than cotton 100% non-woven fabrics in the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, and mordant treatments influenced the chrominance change. In the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, an increase in the percentage of chitosan and nano silver resulted in an increase of the K/S values. The dyeability of chitosan and nano silver composite non-woven fabrics increased by mordant treatments. The light fastness and washing fastness of the mordanted non-woven fabrics were better than the non-mordanted. For the antibacterial activity, the bacterial reduction rate of chitosan and nano silver composite non-woven fabrics was 99.9% to Staphylococcus aureus and Klebsiella pneumoniae.

Preparation and Performance of Composite Membrane Prepared by Layer-by-Layer Coating Method (Layer-by-Layer 코팅법을 적용한 복합막 제조와 투과성능 평가)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.538-546
    • /
    • 2015
  • In this study, composite membrane is prepared by Layer-by-Layer method using hydrophobic polymer as a coating material on the polysulfone support. The existence of coating layer on the surface and cross section was confirmed by the scanning electronic microscopy. The flux and rejection of the resulting membranes were characterized using 100 ppm NaCl feed solution. PVSA, PEI, PAA, PSSA, PSSA_MA were used as a coating polymer in this study. The composite membrane prepared by using 8,000 ppm PAA solution (Ion strength = 0.35, Coating time = 3 min) and 10,000 ppm PEI solution (Coating time = 4 min). As a result, PAA-PEI composite membrane showed flux of 101 LMH and salt rejection of 66.7%. The composite membrane showed the comparable performance as good as NE 4040-70 (Flux = 30 LMH, Rejection = 40~70%) model produced by Toray Chemical co.

Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 기계적 물성)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.31-34
    • /
    • 2004
  • Carbon nanofiber exhibits superior and often unique characteristics of mechanical, electrical chemical and thermal properties. In this study, For improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the effect of dispersion, The dispersion methods of solution blending and mechanical mixing were used. The mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by scanning electron microscope (SEM). Mechanical properties were measured by universal testing Machine (UTM).

  • PDF

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.

A Study on Composite Electroless Nikel Plating with Ceramic Dispersive (비금속 분체를 이용한 무전해 니켈 복합도금에 관한 연구)

  • 김용규;박수훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.43-51
    • /
    • 1989
  • The characteristion of composite electroless Nikel palting on the condition of adding 3kinds ceramic dispersives, Al2O3, Si3O4 and artificial diamond powder were studied. Decreasing solution temperature for composite plating was required to depress the spontaneous decomposition caused by dispersive including enlargement of reaction surface. The rate of composite plating was faster than that of general electroless-Nickel plating without dispersive. this increasing tendency of plating rate was remarkable for the active catalysis, like diamond powder.

  • PDF

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

Capacitance and Output Current Control by CNT Concentration in the CNT/PVDF Composite Films for Electronic Devices (전자소자로의 응용을 위한 CNT/PVDF 복합막에서 CNT 조성에 의한 정전용량과 출력전류 제어)

  • Lee, Sunwoo;No, Im-Jun;Shin, Paik-Kyun;Kim, Yongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1115-1119
    • /
    • 2013
  • The carbon nanotube/poly-vinylidene fluoride (CNT/PVDF) composite films for the use of electronic devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The CNT/PVDF composite films were peeled off from the glass substrate and were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF films and thickness of the films were approximately $20{\mu}m$. The capacitance of the CNT/PVDF films increased dramatically by adding CNTs into the PVDF matrix, and finally saturated approximately 1880 pF. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0 ~ 0.04 wt%. Therefore we can control the performance of the devices from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning

  • Park, Byung-Dae;Um, In Chul;Lee, Sun-Young;Dufresne, Alain
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.119-129
    • /
    • 2014
  • This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.