• Title/Summary/Keyword: Composite Sensor

Search Result 535, Processing Time 0.024 seconds

Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand (전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

A Study on the Design of Intelligent Classifier for Decision of Quality of Barrier Material (차단물질 특성 판정을 위한 지능형 분류기 설계에 관한 연구)

  • Kim, Sung-Ho;Yun, Seong-Ung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.230-235
    • /
    • 2008
  • Recently, LG chemical corporation developed new material called HYPERIER, which has an excellent barrier characteristic. It has many layers which are made of nano-composite within LDPE(Low-Density Poly Ethylene). In order to guarantee the quality of the final product from the production line, a certain test equipment is required to investigate the existence of layers inside the HYPERIER. In this work, ultrasonic sensor based test equipment for investigating the existence of inner layers is proposed. However, it is a tedious job for human operators to check the existence by just looking at the resounding waveform from ultrasonic sensor. Therefore, to enhance the performance of the ultrasonic test equipment, Fast Fourier Transform(FFT) and Principle Components Analysis(PCA) and Back-Propagation Neural Network(BPNN) are utilized which is used for classification of Quality. To verily the feasibility of the proposed scheme, some experiments are executed.

A Study on Development of Visual Navigational Aids to improve Maritime Situation Awareness (해상상황인식 개선을 위한 시각적 항해보조장비 개발에 관한 연구)

  • Kim, Eun-Kyung;Im, Nam-Kyun;Han, Song-Hee;Jeong, Jung-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.379-385
    • /
    • 2012
  • This paper developes the navigation visual aid supporting a watch officer's situation awareness and analyzes its performance test result. Developing the equipment made from composite video sensor which transfer video signal, ranger laser measurement model which search out distance, Pan/ Tilt, center control device. The developed equipment with Pan/Tilt was made from high performance video sensor and ranger laser measurement. To make a real ship test, we carried on setting the developed equipment on ship, observed a danger factor and analyzed a image, and from that we can evaluate marine environment awareness. Through this result, the developed equipment can show effective ability of the awareness of the clearer check and resolution situation when compare with the binocular.

A Study on Foot Pressure by using an Insole Equipped with the Orthogonal Grid Sensor (직교 그리드 센서가 삽입된 인솔을 이용한 족압분포 연구)

  • Son, Jeong-Hyeop;Jun, In-Jun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • In this study, we present a research method to develop a shoe that prevents foot injury by inducing the foot pressure. An orthogonal grid sensor was used to check the foot pressure in the upright standing position, and the change in the foot pressure distribution for various conditions was compared. We checked the conditions for distributing foot pressure efficiently by changing the spring constant of the spring inserted into the sole of the shoe and the foot pressure generated with or without the arch of the insole. In order to minimize the experimental error from the randomness of the human body's behavior, it is possible to predict through foot pressure under certain conditions through finite element analysis that simulates the pressure distribution. By checking the change of foot pressure according to the number and arrangement of springs through finite element analysis, conditions were established to provide more efficient foot pressure. The result can be used for designing footwear for patients with diabetic feet.

Development of IoT Sensor-Gateway-Server Platform for Electric Fire Prediction and Prevention (전기화재 예측 및 예방을 위한 IoT 센서-게이트웨이-서버 플랫폼 개발)

  • Yang, Seung-Eui;Kim, Hankil;Song, Hyun-ok;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.255-257
    • /
    • 2021
  • During the winter season, when electricity usage increases rapidly every year, fires are frequent due to short circuits in aging electrical facilities in multi-use facilities such as traditional markets and jjimjilbangs, apartments, and multi-family houses. Most of the causes of such fires are caused by excessive loads applied to aging wires, causing the wire covering to melt and being transferred to surrounding ignition materials. In this study, we implement a system that measures the overload and overheating of the wire through a composite sensor, detects the toxic gas generated there, and logs it to the server through the gateway. Based on this, we will develop a platform that can predict, alarm and block electric fires in real time through big data analysis, and a simulator that can simulate fire occurrence experiments.

  • PDF

Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles (탄성중합체와 박리 후 파쇄된 흑연입자 복합재를 이용한 대변형률 연성 센서)

  • Park, Sungmin;Nam, Gyungmok;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.815-820
    • /
    • 2016
  • An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50%. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt% on mechanical compliance and electrical conductance of the conductive composite.

Development of Disposable Immunosensors for Rapid Determination of Sildenafil and Vardenafil in Functional Foods

  • Vijayaraj, Kathiresan;Lee, Jun Hyuck;Kim, Hyung Sik;Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We introduced disposable amperometric immunosensors for the detection of Sildenafil and Vardenafil (SDF/VDF) based on screen printed carbon electrodes. The developed immunosensors were used as a non-competitive sandwich-type enzyme immunoassay with a horseradish peroxidase label. The sensors were constructed on screen printed carbon electrodes by the simple electrochemical deposition of a reduced graphene oxide and chitosan (ErGO-CS) composite. To evaluate the sensing chemistry and optimize the sensor characteristics, a series of electrochemical experiments were carried out including electrochemical impedance spectroscopy, cyclic voltammetry and amperometry. The sensors showed a linear response to SDF/VDF concentrations in a range from 100 pg/mL to 300 ng/mL. The lower detection limit was calculated to be 55 pg/mL, the sensitivity was calculated to be $1.02{\mu}Ang/mL/cm^2$, and the sensor performance exhibited good reproducibility with a relative standard deviation (RSD) of 7.1%. The proposed sensing chemistry strategy and the sensor format can be used as a simple, cost-effective, and feasible method for the in-field analysis of SDF/VDF in functional or health supplement food samples.

The Fabrication and Characteristics of 0-3 PbTiO$_3$/P(VDF/TrFE) Nanocomposite Thin Films for Passive Pyroelectric Infrared Sensors

  • Kwon, Sung-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.73-76
    • /
    • 2004
  • 0-3 PbTiO$_3$/P(VDF/TrFE) nanocomposite thin films for passive pyroelectric infrared sensors were fabricated by a two-step spin coating technique. 65wt% VDF and 35 wt% TrFE was formed into a P(VDF/TrFE) powder. Nano size PbTiO$_3$ powder was used. 0-3 connectivity of PbTiO$_3$/P(VDF/TrFE) composite film was successfully achieved and observed using SEM photography. The dielectric constant and pyroelectric coefficient were measured and compared with P(VDF/TrFE). A very low dielectric constant (13.48 at 1KHz and sufficiently high pyroelectric coefficient (3.101 nC/$\textrm{cm}^2$ㆍk at 5$0^{\circ}C$) were measured. This nanocomposite can be used for a new pyroelectric infrared sensor to achieve better performance.

Variables affecting strain sensing function in cementitious composites with carbon fibers

  • Baeza, F.J.;Zornoza, E.;Andion, L.G.;Ivorra, S.;Garces, P.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.229-241
    • /
    • 2011
  • In this work, cement paste samples with 1% (by cement mass) of a conductive carbon fiber admixture have been studied under uniaxial compression. Three different arrangements were used to measure the resistivity of the samples. According to the results obtained, the resistance should be measured using the four wire method in order to obtain good sensitivity and repeatability. The effect of the load value and the load rate on the fractional change of the volume resistivity has been determined. It has been observed that the gage factor (fractional change in resistance respect to strain) increases when the maximum load is increased, and the loading rate does not affect significantly this parameter. The effect of the sample ambient humidity on the material piezoresistivity has also been studied, showing that the response of the composite is highly affected by this parameter.

Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline

  • Beitollahi, Hadi;Tajik, Somayeh;Alizadeh, Reza
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • In this paper we report an electrochemical sensor based on ZnO-functionalized graphene oxide nanocomposite (ZnO-GO) for the sensitive determination of the cabergoline. Cabergoline electrochemical behaviors were investigated by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). The modified electrode shows electrocatalytic activity toward cabergoline oxidation in phosphate buffer solution (PBS) (pH 7.0) with a reduction of the overpotential of about 180 mV and an increase in peak current. The DPV data showed that the obtained anodic peak currents were linearly dependent on the cabergoline concentrations in the range of $1.0-200.0{\mu}M$, with the detection limit of $0.45{\mu}M$. The prepared electrode was successfully applied for the determination of cabergoline in real samples.