• Title/Summary/Keyword: Composite Pressure Vessel

Search Result 103, Processing Time 0.031 seconds

Development of Optimization Code of Type 3 Composite Pressure Vessels Using Semi-geodesic algorithm (준측지궤적 알고리즘을 이용한 타입 3 복합재 압력용기의 최적설계 프로그램 개발)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Cheol-Ung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Composite vessels for high pressure gas storage are commonly used these days because of their competitive weight reduction ability maintaining strong mechanical properties. To supplement permeability of composite under high pressure, it is usually lined by metal, which is called a Type 3 vessel. However, it has many difficulties to design the Type 3 vessel because of its complex geometry, fabrication process variables, etc. In this study, therefore, GUI (graphic user interface) optimal design code for Type 3 vessels was developed based on semi-geodesic algorithm in which various factors of geometry and fabrication variables are considered and genetic algorithm for optimization. In addition, hydrogen vessels for 350/700 bar that can be applied to FCVs(fuel cell vehicles) were designed using this code for verification.

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석)

  • Kim, Junhwan;Shin, Kwangbok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1265-1272
    • /
    • 2014
  • This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

An Empirical Study on the Bursting Properties According to Heat Treatment Condition of the CNG Pressure Vessel (CNG압력용기의 열처리 조건별 파열 특성에 관한 실증적 연구)

  • Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.1-7
    • /
    • 2017
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses is equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. In this study, the bursting test for the pressure vessel depending on the heat treatment conditions of the vessel in which the actual ruptured accident occurred, after the bursting test, the fracture pattern analysis had performed. The mechanical materials properties test using Instrumented Indentation Test had performed to confirm the mechanical properties for each heat treatment cases. Also, the fractography analysis and metallographic analysis had performed to find out the difference of each heat treatment case. By comparing normal vessel with abnormal vessel which have defect of heat treatment conditions in term of the bursting patterns and characteristics of containers using various forensic engineering methods, especially, it is possible to understand how important the heat treatment process is in the high pressure vessel unlike any product.

Fall Impact Analysis of Type 4 Composite Pressure Vessels Using SPH Techniques (SPH 기법을 활용한 Type 4 복합재료 압력용기 낙하 충격 해석)

  • SONG, GWINAM;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.172-179
    • /
    • 2021
  • The drop impact analysis was carried out on Type 4 pressure containers, and the degree of damage to the falling environment was predicted and determined using smoothed particle hydrodynamics (SPH) techniques. The purpose of the design and the optimization process of the winding pattern of the pressure vessel of the composite material is to verify the safety of the container in actual use. Finally, an interpretation process that can be implemented in accordance with domestic test standards can be established to reduce the cost of testing and containers through pre-test interpretation. The research on the fall analysis of pressure vessels of composite materials was conducted using Abaqus, and optimization was conducted using ISIGHT. As a result, the safety of composite pressure vessels in the falling environment was verified.

Dome Shape Design and Performance Evaluation of Composite Pressure Vessel (복합재 압력용기의 돔 형상 설계 및 성능 평가)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun;Doh, Young-Dae;Moon, Soon-Il
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.31-41
    • /
    • 2007
  • Dome shape design methods of Filament Winding (FW) composite pressure vessel, which can suggest various dome contour according to the external loading conditions, were investigated analytically and numerically. The performance indices(PV/W) of the pressure vessels with same cylinder radius and boss opening but different dome shape were evaluated by finite element analysis under the internal pressure loading condition. The analysis results showed that as the dome shape becomes flat, the performance index decreases significantly due to the reduced burst pressure. Especially, for the case of the high value of the parameter ro, the ratio between the radii of the cylinder part and the boss opening, the flat dome is disadvantageous in the aspect of the weight reduction, and additional reinforcing dome design technique should be required to increase the burst pressure. For example, above ro=0.54 condition, the dome shape change according to the loading condition could cause the low burst pressure and increase of composite weight in dome region and is not recommendable except for the special case that maximum inner volume or sufficient space between skirt and dome is the primary design objective. However, at ro=0.35, the dome shape change brings not so significant differences in the performance of FW vessel.

Development of Filament Wound Composite Pressure Vessels with a Single Boss (필라멘트 와인딩법에 의한 단일 개구부 복합재료 압력용기의 개발)

  • Hwang, Byeong-Seon;Kim, Byeong-Seon;Kim, Byeong-Ha;Park, Seung-Beom;Roger, Davidson
    • 연구논문집
    • /
    • s.30
    • /
    • pp.129-135
    • /
    • 2000
  • Double boss type composite pressure bottles have been developed widely but single boss type had not because there are some difficulty in technical point. In this paper a research was performed to develop composite pressure vessel in conjunction with design, fabrication, and test. Fiber pattern and angles were decided by CADFIL software and they are [liner/$15^{\circ}$/$15^{\circ}$/$90^{\circ}$/$18^{\circ}$/$90^{\circ}$/$21^{\circ}$/$21^{\circ}$/$90^{\circ}$]. Fabrication of bottles was done by AEA's 5-axis filament winding machine. During fabrication fiber optic sensor were embedded to measure were behavior of structure at the applied internal pressure. Even though satisfied test results were not obtained, the experimental set-up of fiber optics showed the possibility for the application of filament wound vessels. However, the conventional strain and fabrication of single boss composite bottles.

  • PDF

Optimization on Weight of High Pressure Hydrogen Storage Vessel Using Genetic Algorithm (유전 알고리즘을 이용한 고압 수소저장용기 중량 최적화)

  • Lee, Y.H.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.203-211
    • /
    • 2019
  • In this study, the weight of type IV pressure vessel is optimized through the burst pressure condition using the finite element analysis (FEA) based on the genetic algorithm (GA). The optimization design variables include the thickness of composite layers and the winding angles. The optimized design variables are validated using the numerical simulations for the pressure vessel. Consequently, the weight is decreased by about 6.5% as compared to the previously reported results for Type III pressure vessel. Additionally, a method which reduces the entire optimization time is proposed. In the original method, the population size is constant across all generations. However, the proposed method could reduce the workload through the reduction of the population size by half for every 25 generations. Thus, the proposed method is observed to increase the weight by about 0.1%, however, the working time for the optimization could be decreased by about 46.5%.

Optimization Process of Type 4 Composite Pressure Vessels Using Genetic and Simulated Annealing Algorithm (유전 알고리즘 및 담금질 기법을 활용한 Type 4 복합재료 압력용기 최적화 프로세스)

  • SONG, GWINAM;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.212-218
    • /
    • 2021
  • In this study, we conducted a design optimization of the Type 4 composite pressure vessels to enhance the pressure-resistant performance of the vessels while keeping the thickness of the composite layer. The design variables for the optimization were the stacking angles of the helical layers of the vessels to improve the performance. Since the carbon fibers are expensive material, it is desirable to reduce the use of the carbon fibers by applying an optimal design of the composite pressure vessel. The structural analysis and optimization process for the design of Type 4 composite pressure vessels were carried out using a commercial finite element analysis software, Abaqus and a plug-in for automated simulation, Isight, respectively. The optimization results confirmed the performance and safety of the optimized Type 4 composite pressure vessels was enhanced by 12.84% compared to the initial design.

A Forensic Engineering Study on Bursting Accident of Composite Pressure Vessel in CNG Bus (CNG버스 복합재 압력용기 파열사고에 관한 법공학적 연구)

  • Kim, Eui-Soo;Kim, Jin-Pyo;Park, Nam-Kyu;Kim, Youn-Hoi
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • The bus using compressed natural gas(CNG) trend to be extended in use internationally as optimal counter-plan for reducing discharge gas of light oil due to high concern about environment. But, Composit pressure vessels(CPV) to be equipped with CNG bus is always involved in the point that safety accidents happen due to having compressed natural gas. In this report, we analysis the cause of CPV bursting accident by reviewing design and manufacture factor and suggest preventive measure through this case.