• Title/Summary/Keyword: Composite Piezoelectric Transducer

Search Result 39, Processing Time 0.028 seconds

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

Electromechanical analysis of 2-2 cement-based piezoelectric transducers in series electrically

  • Wang, Jianjun;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.267-284
    • /
    • 2014
  • This paper aims to present the analytical solutions of 2-2 cement based piezoelectric transducers in series electrically based on the theory of piezo-elastic dynamics. The solutions of two different kinds of 2-2 cement based piezoelectric transducers under external harmonic load are obtained by using the displacement method. The effects of electrical connection of piezoelectric layers, loading frequency, thickness and distance of piezoelectric layers on the characteristics of the transducers are discussed. Comparisons with other related experimental investigations are also given, and good agreement is found. The proposed 2-2 cement based piezoelectric transducers have a great potential application in monitoring structural health in civil engineering and capturing mechanical energy or monitoring train-running safety in railway system and traffic safety in road system.

Quantitative Nondestructive Evaluation in Composite Beam Using Piezoelectric Transducers (압전 변환기를 이용한 복합재료 보의 비파괴 평가)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.31-36
    • /
    • 2007
  • A quantitative prediction method for initial crack length in a carbon/epoxy (CF/EP) composite beam using active piezoelectric transducers was established in this study. Wavelet Transform (WT)-based signal processing and identification technique in time-frequency domain was developed to facilitate the determination of damage presence and severity. Dynamic response of a CF/EP composites beam containing a continuously expanding crack, coupled with a pair of active piezoelectric disks, was examined under a narrow band excitation, and then applied with the proposed signal processing technique.

A Study of a Wideband Acoustic Transducer for Underwater Communication Using 1-3 Type Piezoelectric Transducer (1-3형 압전 복합체를 이용한 광대역 수중 통신용 음향 트랜스듀서에 관한 연구)

  • Lee, Kyung-Woo;So, Hyoung-Jong;Lim, Sil-Mook;Kim, Won-Ho;Cho, Wun-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • Recently, many researches in relation to data transmission with faster speed and greater volume, many researches have been carried out on sonar systems for underwater communication. According to these researches, an acoustic transducer for underwater communication requires wide bandwidth properties. In domestic researches for underwater communication sonar, an operating frequency in the range of $20{\sim}40\;kHz$ is used. In this paper, we propose anon-resonance type acoustic transducer for underwater communication. The TVR (transmitting voltage response) characteristics increased linearly as the frequency increased, and the RVS (receiving voltage sensitivity) characteristics were constant as the frequency increased. Traditional techniques for wide bandwidth transducershave a limit and a transmission loss difference at lower and higher frequency operating ranges. In this paper, the new transducer proposed decreased the transmission loss under some conditions. It was optimized with the FE analysis tool (ATILA) and evaluated using the TVR and the RVS characteristics in the range of $10{\sim}90\;kHz$. The value of TVR was 138 dB at 20 kHz and 148 dB at 40 kHz, and the differences was 12 dB. The value of RVS was $195{\pm}2\;dB$ and nearly constant. From theseresults, it is certain that the developed transducers can be used for an underwater communication network in the 1.3 km range with both a 20 kHz bandwidth and 30 kHz center frequency.

Novel design of interdigitated electrodes for piezoelectric transducers

  • Jemai, Ahmed;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Novel design of interdigitated electrodes capable of increasing the performance of piezoelectric transducers are proposed. The new electrodes' geometry improve the electromechanical coupling by offering an enhanced adaptation of the electric field to the interdigitated electrode configuration. The proposed analysis is based on finite element modeling and takes into account local polarization effect. It is shown that the proposed electrodes considerably increase the strain generation compared to flat electrode arrangement used for Macro Fiber Composite (MFC) and Active Fiber Composite (AFC) actuators. Also, electric field singularities are reduced allowing better reliability of the transducer against electric failure.

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.

Validation of Piezoelectric Sensor Diagnostics Algorithm Using Instantaneous Baseline Data (Admittance를 기반으로 한 센서 자가 진단 알고리즘의 실험적 검증 - 상호비교를 통한 센서 결함 탐지)

  • Jo, HyeJin;Jung, Hwee Kwon;Park, Tong il;Park, Gyuhae
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.148-154
    • /
    • 2015
  • In order to detect damage in early stages and properly maintaining structures, the structural health monitoring technology is employed. In most cases, active-sensing SHM needs many piezoelectric (PZT) sensors and actuators. Thus, if there is a defect on PZT used for active-sensing SHM, the structural status could be misclassified. This study, for reliable SHM performance, investigated to detect defects of sensors by using the admittance-based sensor diagnostics. This study also introduced an algorithm that can diagnose sensor defects based only on data measured from the sensors in case that information about the changes in adhesive and environmental investigation, this study confirms that the proposed algorithm could be efficiently applied to real-world structures in which a significant temperature variation could take place.

3D Underwater Object Restoration Using Ultrasonic Transducer Fabricated with Piezoelectric Ceramics/polymer Composites (압전세라믹/고분자 복합압전체 초음파 트랜스듀서를 이용한 3차원 수중 물체 복원)

  • Cho, Hyun-Chul;Lee, Kee-Seong;Lee, Su-Ho;Park, Jung-Hak;Choi, Hun-Il;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1537-1539
    • /
    • 1998
  • In this study, 3-D underwater object restoration using ultrasonic transducer fabricated with PZT-Polymer 1-3 type composite are presented. Using the acquired underwater object data 16${\times}$16 pixels. Modified SCL neural networks using the 16${\times}$16 low resolution image was used for underwater object restoration of 32${\times}$32 high resolution Image.

  • PDF

Pulse-echo Response of Piezoceramics PZT-Polymer 1-3-0 Type Composite (1-3-0형 복합압전체의 펄스-에코특성)

  • 양윤석;유영준;최헌일;손무헌;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.303-306
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powder was synthesized by Wet-Dry combination method. The flexible 1-3-0 type composites were fabricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. This paper represents the acoustic properties with various 3rd phase wt.%. The acoustic impedance of 1-3-0 type composites was lower than that of single phase PZT ceramics. The pulse-echo response of transducer fabricated with 1-3-0 type composites was better than solid PZT transducer.

  • PDF

Piezoelectric and Acoustic Properties of PZI-Polymer 1 -3-0 Type Composite (PZT-고분자 1-3-0형 복합압전체의 압전 및 음향특성)

  • 양윤석;유영준;최헌일;손무헌;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.317-320
    • /
    • 1999
  • In this study, the piezoelectric ceramics PZT powder was synthesized by Wet-Dry combination method. And the flexible 1-3-0 type composites were fabricated with piezoceramic PZT and Eccogel polymer matrix embedded 3rd phase. Dielectric constant of 1-3-0 type composites was lower than that of single phase PZT ceramics. Thickness mode coupling factor k/sub t/ which was comparable with single phase PZT ceramics and mechanical quality factor Qm were about 0.65 and 6, respectively. These composites are considered as a good candidates for broad-band type transducer applications. The acoustic impedance of 1-3-0 type composites was lower than that of single phase PZT ceramics. Therefore, these composites would be better used for hydrophone applications.

  • PDF