Browse > Article
http://dx.doi.org/10.12989/sss.2018.22.4.369

Novel design of interdigitated electrodes for piezoelectric transducers  

Jemai, Ahmed (Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School)
Najar, Fehmi (Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School)
Publication Information
Smart Structures and Systems / v.22, no.4, 2018 , pp. 369-382 More about this Journal
Abstract
Novel design of interdigitated electrodes capable of increasing the performance of piezoelectric transducers are proposed. The new electrodes' geometry improve the electromechanical coupling by offering an enhanced adaptation of the electric field to the interdigitated electrode configuration. The proposed analysis is based on finite element modeling and takes into account local polarization effect. It is shown that the proposed electrodes considerably increase the strain generation compared to flat electrode arrangement used for Macro Fiber Composite (MFC) and Active Fiber Composite (AFC) actuators. Also, electric field singularities are reduced allowing better reliability of the transducer against electric failure.
Keywords
interdigitated electrodes; piezoelectricity; sensor and actuator; polarization; piezocomposite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alghisi, D., Dalola, S., Ferrari, M. and Ferrari, V. (2015), "Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion", Sensors. Actuat. A: Phys., 233, 569-581.
2 Ammar, Y., Buhrig, A., Marzencki, M., Charlot, B., Basrour, S., Matou, K. and Renaudin, M. (2005), "Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator", Proceedings of the 2005 Joint Conf. on Smart Objects and Ambient intelligence: Innovative Context-Aware Services: Usages and Technologies, Grenoble, France.
3 Avsar, A.L. and Sahin, M. (2016), "Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate", Smart Struct. Syst., 18(2), 249-265.   DOI
4 Beckert, W. and Kreher, W.S. (2003), "Modelling Piezoelectric modules with Interdigitated electrode structures", Comput. Mater. Sci., 26, 36-45.   DOI
5 Bowen, C.R., Bowles, A., Drake, S., Johnson, N. and Mahon, S. (1999), "Fabrication and finite element modelling of interdigitated electrodes", Ferroelectrics, 228, 257-269.   DOI
6 Bowen, C.R., Nelson, L.J., Stevens, R., Gain, M.G. and Stewart, M. (2006), "Optimization of Interdigitated electrodes for piezoelectric actuators and Active Fiber composites", J. Electroceram., 16, 263-269.   DOI
7 Paradies, R., Hertwig, M. and Elspass, W.J. (1996), "Shape control of an adaptive mirror at different angles of inclination", J. Intel. Mat. Syst. Str., 7, 203-210.   DOI
8 Prakash, S., Kumar, T.R., Raja, S., Dwarakanathan, D., Subramani, H. and Karthikeyan, C. (2016), "Active vibration control of a full scale aircraft wing using a reconfigurable controller", J. Sound Vib., 361, 32-49.   DOI
9 Sahu, K.C., Tuhkuri, J. and Reddy, J.N. (2015), "Active structural acoustic control of a softcore sandwich panel using multiple piezoelectric actuators and Reddy's higher order theory", J. Low Frequency Noise, Vibration and Active Control, 34, 385-411.   DOI
10 Shen, D., Park, J.H., Ajitsaria, H., Choe, S.Y., Wikle, H.C. and Kim, D.J. (2008), "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting", J. Micromech. Microeng., 18, 055017.   DOI
11 Sodano, H.A., Lloyd, J. and Inman, D.J. (2006), "An experimental comparison between several active composite actuators for power generation", Smart Mater. Struct., 15, 1211-1216.   DOI
12 Tadigadapa S. and Mateti, K. (2009), "Piezoelectric MEMS sensors: state-of-the-art and perspectives", Meas. Sci. Technol., 20, 092001.   DOI
13 Trindade, M.A. and Benjeddou, A. (2011), "Finite element homogenization technique for the characterization of d15 shear piezoelectric macro-fibre composites", Smart Mater. Struct., 20(7), 075012.   DOI
14 Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R. and Qin, X.S. (2017), "Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures", Smart Struct. Syst., 19(6), 633-641.   DOI
15 Hong, Y.K., Moon, K.S., Levy, M. and Vanga, R.R. (2006), "Single-crystal film piezoelectric sensors, actuators and energy harvesters with interdigitated electrodes", Ferroelectrics, 342, 1-13.   DOI
16 Deraemaeker, A. and Nasser, H. (2010), "Numerical evaluation of the equivalent properties of Macro Fiber Composite (MFC) transducers using periodic homogenization", Int. J. Solids Struct., 47, 3272-3285.   DOI
17 Ghodssi R. and P. Lin (2011), MEMS Materials and Processes Handbook, USA.
18 Hagood, N.W., Kindel, R., Ghandi, K. and Gaudenzi, P. (1993), "Improving transverse actuation of piezoceramics using interdigitated surface electrodes", Proceedings of the SPIE 1917, Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, 341, Albuquerque, NM, USA, February, 1.
19 Inman, D.J., Ahmadian, M. and Claus, R.O. (2001), "Simultaneous active damping and health monitoring of aircraft panels", J. Intel. Mat. Syst. Str., 12, 775-783.   DOI
20 Isarakorn, D., Briand, D., Janphuang, P., Sambri, A., Gariglio, S., Triscone, J.M., Guy, F., Reiner, J.W., Ahn, C.H. and Rooij, N.F. (2011), "The realization and performance of vibration harvesting MEMS devices based on an epitaxial piezoelectric thin film", Smart Mater. Struct., 20, 025015.   DOI
21 Jamal, G.A., Rahman, S.L., Rana, M.M., Nafis, S.A.S., Huda, M.M. and Rahman, S.N. (2015), "An alternative approach to wind power generation using piezoelectric material", Am. J. Renew. Sust. Energ., 1, 45-50.
22 Jemai, A., Najar, F., Chafra, M. and Ounaies, Z. (2014), "Mathematical modeling of an active-fiber composite energy harvester with interdigitated electrodes", J. Shock Vib., 2014.
23 Li, Y.X., Zhang, S.Q, Schmidt, R. and Qin, X.S. (2016), "Homogenization of macro-fiber composite using Reissner-Mindlin plate theory", J. Intel. Mat. Syst. Str., 27, 2477-2488.   DOI
24 Jemai, A., Najar, F., Chafra, M. and Ounaies, Z. (2016), "Modeling and parametric analysis of a unimorph piezocomposite energy harvester with interdigitated electrodes", Compos. Struct., 135, 176-190.
25 Kim, S.B, Park, H., Kim, S.H, Wikle, H.C., Park, J.H. and Kim, D.J. (2013), "Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting", J. Microelectromech. Syst., 22, 26-33.
26 Lee, B.S., Lin, S.C., Wu, W.J., Wang, X.Y., Chan, P.Z. and Lee, C.K. (2009), "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film", J. Micromech. Microeng., 19, 065014.   DOI
27 Lu, F., Lee, H.P. and Lim, S.P. (2004), "Modeling and analysis of micro piezoelectric power generators for microelectromechanical-systems applications", Smart Mater. Struct., 13, 57-63.   DOI
28 Moore, S.I. and Yong, Y.K. (2017), "Design and characterisation of cantilevers for multi-frequency atomic force microscopy", IET Micro & Nano Lett., 12, 315-320.   DOI
29 Muralt, P. (2008), "Recent progress in materials issues for piezoelectric MEMS", J. Am. Ceram. Soc., 91, 1385aAS1396.
30 Nguyen, N.T., Yoon, B.S., Park, K.H. and Yoon, K.J. (2011), "Analytical model and optimal design of a d33-mode active layer for the lightweight unimorph piezo-composite actuator", J. Electroceram., 26, 175-184.   DOI
31 Paradies, R. and Melnykowycz, M.M. (2010), "State of stress in piezoelectric elements with interdigitated electrodes", J. Electroceram., 24, 137-144.   DOI
32 Zhang, S.Q., Wang, Z.X., Qin, X.S., Zhao, G.Z. and Schmidt, R. (2016), "Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators", Compos. Struct., 150, 62-72.
33 Zhang, S.Q., Li, Y.X. and Schmidt, R. (2015), "Modeling and simulation of macro-fiber composite layered smart structures", Compos. Struct., 126, 89-100.