Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.4.371

Impact localization method for composite structures subjected to temperature fluctuations  

Gorgin, Rahim (Faculty of Civil Engineering and Mechanics, Jiangsu University)
Wang, Ziping (Faculty of Civil Engineering and Mechanics, Jiangsu University)
Publication Information
Smart Structures and Systems / v.30, no.4, 2022 , pp. 371-383 More about this Journal
Abstract
A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.
Keywords
composite plate; elastic waves; impact localization; piezoelectric transducer; temperature fluctuations;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Zhong, Y. and Xiang, J. (2019), "Impact location on a stiffened composite panel using improved linear array", Smart Struct. Syst., Int. J., 24(2), 173-182. https://doi.org/10.12989/sss.2019.24.2.173   DOI
2 Ziola, S.M. and Gorman, M.R. (1991), "Source location in thin plates using cross-correlation", J. Acoust. Soc. Am., 90(5), 2551-2556. https://doi.org/10.1121/1.402348   DOI
3 Seno, A.H. and Aliabadi, M.H. (2022), "Uncertainty quantification for impact location and force estimation in composite structures", Struct. Health Monitor., 21(3). https://doi.org/10.1177/14759217211020255   DOI
4 Sharif Khodaei, Z., Ghajari, M. and Aliabadi, M.H. (2012), "Determination of impact location on composite stiffened panels", Smart Mater. Struct., 21(10), 105026. https://doi.org/10.1088/0964-1726/21/10/105026   DOI
5 Shrestha, P., Park, Y. and Kim, C-G. (2017), "Low velocity impact localization on composite wing structure using error outlier based algorithm and FBG sensors", Compos. Part B: Eng., 116, 298-312. https://doi.org/10.1016/j.compositesb.2016.10.068   DOI
6 Seno, A.H. and Aliabadi, M.H. (2019), "Impact localisation in composite plates of different stiffness impactors under simulated environmental and operational conditions", Sensors, 19(17), 3659. https://doi.org/10.3390/s19173659   DOI
7 McLaskey, G.C., Glaser, S.D. and Grosse, C.U. (2010), "Beamforming array techniques for acoustic emission monitoring of large concrete structures", J. Sound Vib., 329(12), 2384-2394. https://doi.org/10.1016/j.jsv.2009.08.037   DOI
8 Nakatani, H., Hajzargarbashi, T., Ito, K., Kundu, T. and Nobuo, T. (2013), "Locating point of impact on an anisotropic cylindrical surface using acoustic beamforming technique", Key Eng. Mater., 558, 331-340. https://doi.org/10.4028/www.scientific.net/KEM.558.331   DOI
9 Park, B., Sohn, H., Olson, S.E., DeSimio, M.P., Brown, K.S. and Derriso, M.M. (2012), "Impact localization in complex structures using laser-based time reversal", Struct. Health Monitor., 11(5), 577-588. https://doi.org/10.1177/1475921712449508   DOI
10 Xu, J. (2011), "P-wave onset detection based on the spectrograms of the AE signals", Adv. Mater. Res., 250, 3807-3810. https://doi.org/10.4028/www.scientific.net/AMR.250-253.3807   DOI
11 Yue, N. and Sharif Khodaei, Z. (2016), "Assessment of impact detection techniques for aeronautical application: ANN vs LSSVM", J. Multisc. Modell., 7(4), 1640005. https://doi.org/10.1142/S1756973716400059   DOI
12 Zhao, G., Li, S., Hu, H., Zhong, Y. and Li, K. (2018), "Impact localization on composite laminates using fiber Bragg grating sensors and a novel technique based on strain amplitude", Optical Fiber Technol., 40, 172-179. https://doi.org/10.1016/j.yofte.2017.12.001   DOI
13 Kundu, T., Das, S. and Jata, K.V. (2007), "Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data", J. Acoust. Soc. Am., 122, 2057-2066. https://doi.org/10.1121/1.2775322   DOI
14 Farrar, C.R. and Worden, K. (2006), "An introduction to structural health monitoring", Philosoph. Transact. Royal Soc. A, Mathe. Phys. Eng. Sci., 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928   DOI
15 Gorgin, R. and Wang, Z. (2021), "Baseline-free damage imaging technique for Lamb wave based structural health monitoring systems", Smart Struct. Syst., Int. J., 28(5), 689-698. https://doi.org/10.12989/sss.2021.28.5.689   DOI
16 Boschetti, F., Dentith, M.D. and List, R.D. (1996), "A fractalbased algorithm for detecting first arrivals on seismic traces", Geophysics, 61(4), 1095-1102. https://doi.org/10.1190/1.1444030   DOI
17 Gorgin, R., Luo, Y. and Wu, Z. (2020), "Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review", Ultrasonics, 105, 106114. https://doi.org/10.1016/j.ultras.2020.106114   DOI
18 Qiu, L., Deng, X., Yuan, S., Huang, Y. and Ren, Y. (2018), 'Impact monitoring for aircraft smart composite skins based on a lightweight sensor network and characteristic digital sequences", Sensors, 18(7), 2218. https://doi.org/10.3390/s18072218   DOI
19 Huynh, T-C. and Kim, J-T. (2016), "Compensation of temperature effect on impedance responses of PZT interface for prestressloss monitoring in PSC girders", Smart Struct. Syst., Int. J., 17(6), 881-901. https://doi.org/10.12989/sss.2016.17.6.881   DOI
20 Jang, B-W., Lee, Y-G., Kim, J-H., Kim, Y-Y. and Kim, C-G. (2012), "Real-time impact identification algorithm for composite structures using fiber Bragg grating sensors", Struct. Control Health Monitor., 19(7), 580-591. https://doi.org/10.1002/stc.1492   DOI
21 Jang, B-W. and Kim, C-G. (2016), "Impact localization on a composite stiffened panel using reference signals with efficient training process", Compos. Part B: Eng., 94, 271-285. https://doi.org/10.1016/j.compositesb.2016.03.063   DOI
22 Gorgin, R., Wang, Y., Gao, D. and Wu, Z. (2015), "Probabilisticbased damage identification based on error functions with an autofocusing feature", Smart Struct. Syst., Int. J., 15(4), 1121-1137. https://doi.org/10.12989/sss.2015.15.4.1121   DOI
23 He, T., Pan, Q., Liu, Y., Liu, X. and Hu, D. (2012), "Near-field beamforming analysis for acoustic emission source localization", Ultrasonics, 52(5), 587-592. https://doi.org/10.1016/j.ultras.2011.12.003   DOI
24 Hinkley, D.V. (1971), "Inference about the change-point from cumulative sum tests", Biometrika, 58, 509-523. https://doi.org/10.1093/biomet/58.3.509   DOI
25 Jang, B-W. and Kim, C-G. (2019), "Impact localization of composite stiffened panel with triangulation method using normalized magnitudes of fiber optic sensor signals", Compos. Struct., 211, 522-529. https://doi.org/10.1016/j.compstruct.2019.01.028   DOI
26 Kim, J-H., Kim, Y-Y., Park, Y. and Kim, C-G. (2015), "Lowvelocity impact localization in a stiffened composite panel using a normalized cross-correlation method", Smart Mater. Struct., 24, 045036. https://doi.org/10.1088/0964-1726/24/4/045036   DOI
27 Ciampa, F., Meo, M. and Barbieri, E. (2012), "Impact localization in composite structures of arbitrary cross section", Struct. Health Monitor., 11(6), 643-655. https://doi.org/10.1177/1475921712451951   DOI
28 Kosel, T., Grabec, I. and Kosel, F. (2003), "Intelligent location of simultaneously active acoustic emission sources: part 1", Aircr. Eng. Aerosp. Technol., 75(1), 11-17. https://doi.org/10.1108/00022660310457248   DOI
29 Kundu, T., Das, S., Martin, S.A. and Jata, K.V. (2008), "Locating point of impact in anisotropic fiber reinforced composite plates", Ultrasonics, 48(3), 193-201. https://doi.org/10.1016/j.ultras.2007.12.001   DOI
30 Ciampa, F. and Meo, M. (2010b), "A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures", Compos. Part A: Appl. Sci. Manuf., 41(12), 1777-1786. https://doi.org/10.1016/j.compositesa.2010.08.013   DOI
31 Ciampa, F. and Meo, M. (2010a), "Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and a Newton-based optimization technique", Smart Mater. Struct., 19(4), 045027. https://doi.org/10.1088/0964-1726/19/4/045027   DOI
32 Coverley, P.T. and Staszewski, W.J. (2003), "Impact damage location in composite structures using optimized sensor triangulation procedure", Smart Mater. Struct., 12(5), 795-803. https://doi.org/10.1088/0964-1726/12/5/017   DOI
33 De Simone, M.E., Ciampa, F., Boccardi, S. and Meo, M. (2017), "Impact source localisation in aerospace composite structures" Smart Mater. Struct., 26(12), 125026. https://doi.org/10.1088/1361-665X/aa973e   DOI