• Title/Summary/Keyword: Composite Panel

Search Result 543, Processing Time 0.029 seconds

Characteristics of Composite Body Panel (복합재료 Body Panel의 특성평가)

  • Nam, Hyun-Wook;Pyun, Hyun-Joong;Lee, Young-Tae;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.109-114
    • /
    • 2000
  • A research fur development of composite body panel is in progress for lightening tare. In this study, experiments on estimation of mechanical properties of LPMC (Low pressure molding compound) including fatigue and impact characteristics were carried out. The experiments show that LPMC satisfied basic requirements of car body panel. The fatigue life of LPMC was predicted and the material degradation due to fatigue and impact were fined out.

  • PDF

Supersonic Flutter Analysis of Cylindrical Composite Panels with Structural Damping Treatments (구조 감쇠 처리된 원통형 복합적층 패널의 플러터 해석)

  • Shin, Won-Ho;Oh, Il-Kwon;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.131-134
    • /
    • 2002
  • Supersonic flutter analysis of cylindrical composite panels with structural damping treatments has been performed using the finite element method based on the layerwise shell theory. The natural frequencies and loss factors of cylindrical viscoelastic composites are computed considering the effects of transversely shear deformation. The panel flutter of cylindrical composite panels is analyzed considering structural damping effect. Various damping characteristics for unconstrained layer damping, constrained layer damping, and symmetrically co-cured sandwich laminates are compared with those of an original base panel in view of aeroelastic stabilities.

  • PDF

Structural Analysis of Composite Partition Panel according to Weaving Methods (직조 방법에 따른 복합재 파티션 패널의 구조 해석)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Lee, Jae Jin;Mun, Ji Hun;Kang, Da Kyung;Ahn, Min Su;Lee, Jae Wook
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.140-146
    • /
    • 2020
  • The purpose of this paper is to examine the possibility of weight reduction by changing the partition panel of vehicle from an existing aluminum material to carbon fiber reinforced plastics. Three weaving methods (plain, twill and satin) were used in the manufacture of composite materials, and they were produced and tested to derive their material properties. The analysis model of composite partition panel for torsional conditions was developed and the structural stability and system stiffness were evaluated according to Tsai-Hill failure criteria. With design variables for fiber orientation angles and stacking sequence, evolutional optimal algorithm was performed and as the results, the optimal composite partition panel was designed. In addition, the structural analysis results for strength and specific stiffness were compared with aluminum partition panels and composite partition panels to verify the possibility of weight reduction.

Analysis of Sound Insulation Performance of Honeycomb Composite Panels for Cruise Ships (크루즈선박용 허니컴 패널의 차음 성능 해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Roh, Jae-Ouk;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2014
  • In this paper, the interface matrix of honeycomb composite panel has been derived by the governing equation of a honeycomb sandwich panel. The interface matrix of honeycomb panel is added to the previously developed transfer matrix method, thus analysis of the multi-layered insulation composite panel with honeycomb is accomplished. Furthermore, predictions of sound transmission loss(STL) for the ship's insulation panel with honeycomb and mineral wool are presented. The insulation performance of the honeycomb used for skin of the ship's insulation panel is better than that of 0.35 mm steel panel by 2dB, approximately. Although honeycomb panel has inefficient insulation performance beside steel panel, honeycomb panel achieve improvements in the performance of weight reduction. The surface density of the panel with honeycomb is rather than with steel by $5.2kg/m^2$. It is decrease in weight by 31.7 %.

Bending Properties of the Composite Panel Composed of Particleboard and Apitong (Dipterocarpus grandiflorus) Veneer (파티클보드와 아피통단판을 구성 접착한 복합판넬의 휨성질)

  • Lee, Phil-Woo;Yoon, Hyoung-Un;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.53-61
    • /
    • 1991
  • Mechanical properties of composite panel made with 3mm thick Apitong(Dipterocarpus grandiflorus) veneer on each face of particleboard core of 4 different specific gravity were determined. The results obtained were as follows: 1. Measured MOR and MOE increased with an increased in specific gravity of particleboard core. 2. Test results showed that the difference in bending properties between flatwise bending and edgewise bending was present. The average MOE value of flatwise loading was higer than that of epdgewise loading. But it was shown reverse tendency in MoR and MOE. 3. The delamination between face veneer and core particle was found in flatwise bending but nell in edgewise. 4. These composite panel could be substituted for plywood and other panel materials in furniture making as considered suitable allowable stress and bending strength.

  • PDF

Basic Study on Fiber Composite Panel Production for Impact·Blast Resistant (방호·방폭 보강용 복합섬유 패널 제작을 위한 기초연구)

  • Kim, Woonhak;Kang, Seokwon;Yun, Seunggyu
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.235-243
    • /
    • 2015
  • The methods to improve the protection and explosion-proof performance of concrete structures include the backside reinforcement or concrete material property improvement and the addition of structural members or supports to increase the resistance performance, but they are inefficient in terms of economics and structural characteristics. This study is about the basic study on the fiber composite panel cover, and the nano-composite material and adhesive as the filler, to maximize the specific performance of each layer and the protection and explosion-proof performance as the composite panel component by improving the tensile strength, light weight, adhesion and fire-proof performances. The fiber composite panel cover (aramid-polyester ratios of 6:4 and 6.5:3.5) had a 2,348 MPa maximum tensile strength and a 1.8% maximum elongation. The filler that contained the nano-composite material and adhesive had a 4 MPa maximum tensile shear adhesive strength. In addition, the nano-composite filler was 30% lighter than the normal portland cement

Minimum Weight Design of Laminated Composite Panel under Combined Loading (조합하중이 작용하는 복합적층 패널의 최소중량화설계)

  • Lee Jong-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2006
  • Minimum weight design of laminated composite panel under combined loading was studied using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods. Various buckling load factors are obatined for laminated composite panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USNl25 prepreg and are simply-supported on four edges under combined loading, and then for them, minimum weight design analyses are carried out by the nonlinear search optimizer, ADS. This minimum weight design analyses are constructed with various process such as the simple design process, test simulation process and sensitivity analysis. Subseguently, the buckling mode shapes are obtained by buckling and minimum weight analyses.

Composite Iso-Grid Panel Production and Buckling Test (복합재 Iso-Grid 패널 제작 및 좌굴시험)

  • Yoo Jae-Seok;Kim Kwang-Soo;Jang Young-Soon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.51-55
    • /
    • 2004
  • A composite Iso-grid panel is manufactured and tested by compressive load. Vertical stringers and side stringers are joined with skin by secondary bonding using a liquid type adhesive. Bonding fixtures were developed to attach the stringers to skin. A-scan was done for inspection of secondary bonding region. The out of displacement field is visualized by shadow moire system. The strain and vertical displacement are measured by strain gages and L VDT (Linear Variable Differential Transformer). A local buckling is occurred at all grid sections. After that, the final failure is occurred. The strain of side stringer is much less than that of vertical stringer and skin. Due to the side stringer, the local buckling is delayed. Therefore the ratio of the first buckling to failure load is greater than that of vertical stringer stiffened panel.

  • PDF

A Study of Shear Properties of Surface Treated Aluminum/CFRP Composites (표면처리된 알루미늄/CFRP 복합재의 전단특성에 관한 연구)

  • 양준호;지창헌;윤창선;이경엽
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.75-78
    • /
    • 2000
  • This study investigates the effect of surface treatment on the shear strength between aluminum panel and composite plate. The aluminum panel was surface-treated by DC Plasma and the composite Plate was surface-treated by ion beam. Lap shear test and T-peel test were performed to determine the shear strength and T-peel strength. Results showed that the shear strength of surface-treated case was 2.5 times higher than that of untreated case. The T-peel strength of treated case was more than 5 times higher than that of untreated case. SEM examination showed that the strength increase of surface-treated case was due to the more spread of epoxy to the panel.

  • PDF

Investigation on low velocity impact on a foam core composite sandwich panel

  • Xie, Zonghong;Yan, Qun;Li, Xiang
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.159-172
    • /
    • 2014
  • A finite element model with the consideration of damage initiation and evolution has been developed for the analysis of the dynamic response of a composite sandwich panel subject to low velocity impact. Typical damage modes including fiber breakage, matrix crushing and cracking, delamination and core crushing are considered in this model. Strain-based Hashin failure criteria with stiffness degradation mechanism are used in predicting the initiation and evolution of intra-laminar damage modes by self-developed VUMAT subroutine. Zero-thickness cohesive elements are adopted along the interface regions between the facesheets and the foam core to simulate the initiation and propagation of delamination. A crushable foam core model with volumetric hardening rule is used to simulate the mechanical behavior of foam core material at the plastic state. The time history curves of contact force and the core collapse area are obtained. They all show a good correlation with the experimental data.