• Title/Summary/Keyword: Composite Materials

Search Result 7,733, Processing Time 0.045 seconds

A Study on the Vibration Characteristics of Symmetry, Asymmetry Laminated Composite Materials by using Time-Average ESPI (시간평균 ESPI를 이용한 대칭.비대칭 적층 복합재료의 진동 특성 비교에 관한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Kang Shin-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.259-260
    • /
    • 2006
  • The ESPI(Electronic Speckle Pattern Interferometry) is a real time, full-field, non-destructive optical measurement technique. In this study, ESPI is proposed for the purpose of vibration analysis for new material, composite material. Composite materials have various complicated characteristics according to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. If use Time-Average ESPI, can analyze vibration characteristic of composite material by real time easily. This study manufactured laminated composite of symmetry, asymmetry two kinds that is consisted of CFRP(Carbon Fiber Reinforced Plastics) and shape of test piece is rectangular form.

  • PDF

Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material (3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구)

  • Kim, Min-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

Wear of contemporary dental composite resin restorations: a literature review

  • Dimitrios Dionysopoulos;Olga Gerasimidou
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.18.1-18.13
    • /
    • 2021
  • Composite resins are the most commonly used dental restorative materials after minimally invasive dental procedures, and they offer an aesthetically pleasing appearance. An ideal composite restorative material should have wear properties similar to those of tooth tissues. Wear refers to the damaging, gradual loss or deformation of a material at solid surfaces. Depending on the mechanism of action, wear can be categorized as abrasive, adhesive, fatigue, or corrosive. Currently used composite resins cover a wide range of materials with diverse properties, offering dental clinicians multiple choices for anterior and posterior teeth. In order to improve the mechanical properties and the resistance to wear of composite materials, many types of monomers, silane coupling agents, and reinforcing fillers have been developed. Since resistance to wear is an important factor in determining the clinical success of composite resins, the purpose of this literature review was to define what constitutes wear. The discussion focuses on factors that contribute to the extent of wear as well as to the prevention of wear. Finally, the behavior of various types of existing composite materials such as nanohybrid, flowable, and computer-assisted design/computer-assisted manufacturing materials, was investigated, along with the factors that may cause or contribute to their wear.

Studies on Wood-based Composite Panel with Waste Tire - Properties of Composite Boards in Relation to Hot Pressing Conditions - (폐타이어를 이용한 목질계 복합판넬의 연구 - 열압조건에 의한 재질특성 -)

  • Lee, Weon-Hee;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • The effect and control of wood property of reconstituted composite panels for improved board properties by wood-waste materials and development of combination method for heterogeneous materials have been of interest to the wood science researchers. The purpose of this study is to consider the properties in relation to hot pressing conditions and to develope the optimum hot pressing condition with waste wood and waste tire for the manufacturing of composite boards. The study of composite boards for recycling of wood and waste tire is nothing up to the present. Physical and mechanical properties such as specific gravity, moisture content, swelling coefficient, modulus of rupture and modulus of elasticity in bending test were studied. The condition of 3-stage press time for the lowest moisture content of composite board was $4{\rightarrow}3{\rightarrow}3$ minutes. Specific gravity of composite panels was affected mainly by the amount of rubber chip. Because of the low rigidity and high elasticity in rubber chip, it is considered the composite panel was adequate material in the place of compression load, but not bending load. Therefore, it was concluded that a use of rubber-based wood composite panel is proper to the interior materials such as floor a room than exterior materials. From the test results, the most optimum hot pressing conditions were $4{\rightarrow}3{\rightarrow}3$ minutes for 3-stage press time and $45{\rightarrow}20{\rightarrow}5kg/cm^2$ for 3-stage press pressure. The rubber-based wood composite panel was very excellent in elasticity by combination of rubber chip in comparison with existing other wood-based materials. Therefore, it was considered that rubber-based wood composites can be applicable to every interior materials such as floor a room and will be expected to effective reuse and recycle of waste tires and wood-waste materials, and will be contribute to protection of environment pollution in earth.

  • PDF

Corrosion Behaviors of TiC Ceramic Particulate Reinforced Steel Composites Fabricated by Liquid Pressing Infiltration Process in Salt Water Environment (용융가압함침공정으로 제조된 TiC 세라믹 입자 강화 철강복합재의 염수환경에서의 부식 특성)

  • Lee, Yeong-Hwan;Ko, Seongmin;Shin, Sangmin;Cho, Seungchan;Kim, Yangdo;Kim, Junghwan;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.251-255
    • /
    • 2020
  • In this study, TiC ceramic particulate reinforced steel composites was fabricated using a liquid pressing infiltration process. Studies were conducted on microstructure analysis and basic physical properties such as hardness and corrosion characteristics in salt water environment for comparison with commercial nodular cast iron. As a result of comparison of corrosion characteristics in a salt water environment, both corrosion potential and corrosion current density were lower than that of ductile graphite cast iron. The lower calculated corrosion rate confirms that the TiC-Fe metal composite has superior corrosion resistance than the cast iron.

Research Trend and Product Development Potential of Fungal Mycelium-based Composite Materials (곰팡이 균사체 기반 복합소재의 연구 동향과 제품 개발 가능성)

  • Kim, Da-Song;Kim, Yong-Woon;Kim, Kil-Ja;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.174-178
    • /
    • 2017
  • Fungal mycelium-based composite materials (FMBC) are a new biomaterial to replace the existing composite materials. To compete with lightweight, high-performance composite materials represented by fiber-reinforced plastic (FRP), various physical and chemical properties and functionality must be secured. Especially, the composite materials made by using mycelium of mushroom is called mushroom plastic. Currently, Ecovative, Grado Zero Espace and MycoWorks in USA and Europe are launching new products. Products utilizing FMBC can be launched in the market for construction materials, automobile interior materials and artificial leather substitutes. In spite of this high possibility, mass production using FMBC has not yet been reported. This review introduces the FMBC, a material that can replace existing plastics, inorganic building materials and animal skins in an environmentally and economically viable way, and looks at the possibility of future biomaterials by summarizing recent research contents.

A Study on the Vibration Characteristics Analysis of Composite Materials by Using Electronic Speckle PatternInterferometry Method (전자처리 스페클 패턴 간섭법을 이용한 복합재료의 진동 특성 해석에 관한 연구)

  • 김형택;정현철;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.388-392
    • /
    • 1995
  • The Electronic Speckle Pattern Interferometry(ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. Composite materials have various complicated characteristics depending on the ply materials,ply orientations,ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite material. For efficient use of composit materials in engineering applications, the dynamic behavior such as, natural frequencies and modal patterns should be identified. This studying presents FEM results for the free vibration of symmetrically laminated composite as [30/-30/90] $_{s}$. The natural frequencies of laminated composite rectangular plates having the boundary condition(:2-edge clamped) are experimentally obtained. In order to demonstrate the validity of the experiment,FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.t.

  • PDF

A Comparative Study on the Design Techniques of Metal and Hybrid Composite Carbody Structures in Railway Vehicle System (금속재 차체와 하이브리드 복합재 차체와의 설계기술 비교 연구)

  • Shin Kwang-Bok;Jeon Seoung-Gie;Cheon Jun-Ho;Lee Seung-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.207-211
    • /
    • 2004
  • There are the marked differences between the design techniques of carbody structures made of composite materials and metal materials. The design techniques of carbody structures made of metal materials have already been guaranteed in the domestic field. But, in case of the hybrid composite carbody structures, it is the first attempt to be developed and there is no experience of the design in the railway applications. In this paper, the design techniques of hybrid composite structures were introduced and compared with that of the conventional metal carbody.

  • PDF

Manufacture of arrester module using braided composite materials (브레이드 복합재료를 이용한 피뢰기 모듈 제조에 관한 연구)

  • Han, D.H.;Cho, H.G.;Han, S.W.;Park, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1467-1469
    • /
    • 2002
  • This paper aims to investigate the characteristics of braided thermoplastic and thermosetting composite and pressure relief for polymer arrester. In general, braided composite has potential for improved impact and delamination resistance. Manufacturing processes of the braided composite could also be automated and could potentially lead to lower costs. Therefore, in consideration of characteristics of pressure relief for polymer arrester, the fabric pattern of braided composite was studied. And polymer arrester module was manufactured with braid.

  • PDF