DOI QR코드

DOI QR Code

Corrosion Behaviors of TiC Ceramic Particulate Reinforced Steel Composites Fabricated by Liquid Pressing Infiltration Process in Salt Water Environment

용융가압함침공정으로 제조된 TiC 세라믹 입자 강화 철강복합재의 염수환경에서의 부식 특성

  • Lee, Yeong-Hwan (Composite Research Division, Korea Institute of Materials Science) ;
  • Ko, Seongmin (Composite Research Division, Korea Institute of Materials Science) ;
  • Shin, Sangmin (Composite Research Division, Korea Institute of Materials Science) ;
  • Cho, Seungchan (Composite Research Division, Korea Institute of Materials Science) ;
  • Kim, Yangdo (School of Materials and Science Engineering, Pusan National University) ;
  • Kim, Junghwan (Composite Research Division, Korea Institute of Materials Science) ;
  • Lee, Sang-Kwan (Composite Research Division, Korea Institute of Materials Science) ;
  • Lee, Sang-Bok (Composite Research Division, Korea Institute of Materials Science)
  • Received : 2020.10.15
  • Accepted : 2020.10.27
  • Published : 2020.10.31

Abstract

In this study, TiC ceramic particulate reinforced steel composites was fabricated using a liquid pressing infiltration process. Studies were conducted on microstructure analysis and basic physical properties such as hardness and corrosion characteristics in salt water environment for comparison with commercial nodular cast iron. As a result of comparison of corrosion characteristics in a salt water environment, both corrosion potential and corrosion current density were lower than that of ductile graphite cast iron. The lower calculated corrosion rate confirms that the TiC-Fe metal composite has superior corrosion resistance than the cast iron.

본 연구에서는 용융가압함침공정을 이용하여 제조된 TiC 세라믹 입자강화 철강복합재를 제조하고 상용구상흑연주철과 비교를 위하여 미세조직 분석 및 경도 등 기초물성과 선박 해양 분야등의 적용가능성 검토를 위하여 염수환경에서의 부식 특성에 관한 연구를 진행하였다. 염수환경에서의 부식특성 비교 결과 구상흑연주철 대비 부식전위와 부식전류밀도 모두 낮은 값을 나타내었고, 낮은 연간부식률을 통하여 TiC-Fe 금속복합재의 내식성이 더 뛰어난 것을 확인하였다.

Keywords

References

  1. Qi, Q., Liu, Y., and Huang, Z., "Promising Metal Matrix Composites (TiC/Ni-Cr) for Intermediate-temperature Solid Oxide Fuel Cell (SOFC) Interconnect Applications", Scripta Materialia, Vol. 109, 2015, pp. 56-60. https://doi.org/10.1016/j.scriptamat.2015.07.017
  2. Oh, N.R., Lee, S.K., Hwang, K.C., and Hong, H.U., "Characterization of Microstructure and Tensile Fracture Behavior in a Novel Infiltrated TiC-steel Composite," Scripta Materialia, Vol. 112, 2016, pp. 123-127. https://doi.org/10.1016/j.scriptamat.2015.09.028
  3. Oh, N.-R., Lee, S.-K., Cho S.-C., Jo, I.-G., Hwang, K.-C., Kim, D.-H., Cho, Y.-T., Sur, D.-W., and Hong, H.U., "Temperature Dependency of the Tensile Characteristics and Transition of Fracture Behaviors in a Novel Infiltrated TiC-SKD11 Composites", Korean Journal of Metals and Materials, Vol. 55, No. 3, 2017, pp. 156-164. https://doi.org/10.3365/KJMM.2017.55.3.156
  4. Cho, S., Jo, I., Kim, H., Kwon, H.-T., Lee, S.-K., and Lee, S.-B., "Effect of TiC Addition on Surface Oxidation Behavior of SKD11 Tool Steel Composites", Applied Surface Science, Vol. 415, 2017, pp. 155-160. https://doi.org/10.1016/j.apsusc.2016.11.164
  5. Cho, S., Jo, I., Lee, S.-K., and Lee, S.-B., "Microstructure and Wear Characteristics of TiC-SKD11 Composite Fabricated by Liquid Pressing Infiltration Process", Composites Research, Vol. 30, No. 3, 2017, pp. 209-214. https://doi.org/10.7234/composres.2017.30.3.209
  6. Jam, A., Nikzad, L., and Razavi, M., "TiC-based Cermet Prepared by High-energy Ball-milling and Reactive Spark Plasma Sintering", Ceramics International, Vol. 43, No. 2, 2017, pp. 2448-2455. https://doi.org/10.1016/j.ceramint.2016.11.039
  7. Lee, Y.-H., Huynh, X.-K., and Kim, J.S., "Spark Plasma Sintering of Fe-TiC Composite Powders", Journal of Korean Powder Metallurgy Institute, Vol. 21, No. 5, 2014, pp. 382-388. https://doi.org/10.4150/KPMI.2014.21.5.382
  8. Wang, Z., Lin, T., He, X., Shao, H., Zheng, J., and Qu, X., "Microstructure and Properties of TiC-high Manganese Steel Cermet Prepared by Different Sintering Processes", Journal of Alloys and Compounds, Vol. 650, No. 25, 2015, pp. 918-924. https://doi.org/10.1016/j.jallcom.2015.08.047
  9. Kim, Y.-I., An, G.S., Lee, W., Jang, J.M., Park, B.-G., Jung, Y.-G., Choi, S.-C., and Ko, S.-H., "In-situ fabrication of TiC-Fe3Al Cermet", Ceramics International, Vol. 43, No. 8, 2017, pp. 5907-5913. https://doi.org/10.1016/j.ceramint.2017.01.078
  10. Wang, Z., Lin, T., He, X., Shao, H., Zheng, J., and Qu, X., "Microstructure and Properties of TiC-high Manganese Steel Cermet Prepared by Different Sintering Processes", Journal of Alloys and Compounds, Vol. 650, No. 25, 2015, pp. 918-924. https://doi.org/10.1016/j.jallcom.2015.08.047
  11. Lee, Y.-H., Ko, S., Park, H., Lee, D., Shin, S., Jo, I., Lee, S.-B., Lee, S.-K., Kim, Y., and Cho, S., "Effect of TiC Particle Size on High Temperature Oxidation Behavior of TiC Reinforced Stainless Steel", Applied Surface Science, Vol. 480, 2019, pp. 951-955. https://doi.org/10.1016/j.apsusc.2019.02.138
  12. Cho, S., Jo, I., Lee, Y.-H., Yoo, Y.W., Byon, E., Lee, S.-K., and Lee, S.-B., "Highly Improved Oxidation Resistance of TiCSKD11 Composite by SiC/$TiB_2$ Based Hybrid Coating", Applied Surface Science, Vol. 448, 2018, pp. 407-415. https://doi.org/10.1016/j.apsusc.2018.04.156
  13. Jones, D.A., Principles and Prevention of Corrosion, pp. 75-77, PrenticeHall, 1996.