• Title/Summary/Keyword: Composite Laminate

검색결과 650건 처리시간 0.063초

새로 개발된 세라믹 직포 보강 세라믹 기지 복합체의 인장 및 곡강도 시험 (Flexure and tension tests of newly developed ceramic woven fabric/ceramic matrix composites)

  • Dong-Woo Shin;Jin-Sung Lee;Chang-Sung Lim
    • 한국결정성장학회지
    • /
    • 제6권1호
    • /
    • pp.73-87
    • /
    • 1996
  • 새로 개발된 분말침투 및 연속 다중함침법에 의해 제조된 세라믹 섬유 복합체의 기 계적 물성을 3점 곡강도 빛 인장 시험을 통하여 평가하였다. 정확한 물성 측정을 위하여 strain g gauge 빛 acoustic emission 측정 장비가 사용되였다. 실험 시편은 $Al_20_3$직포$Al_20_3$와 SiC직포/SiC를 기본 재료로 하고 있으며, 일방향으로 배열왼 SiC 섬유(Textron SCS - 6)/SiC 복합체를 비교 목적으로 제작 시험하였다. 이론 밀도의 약 73%인 SiC 직포/SiC 복합체의 최대곡강도는 300 MPa이고, 기지내 균열이 처음 발생하는 응력은 77 MPa였다. 인장강도는 곡강도의 1/3 정 도의 낮은 값을 나타내였고, 인장 시험중의 첫번째 기지 균열 응력 또한 곡강도 시험에서 얻은 값보다는 상당히 낮은 값을 보여주였다. 곡강도 물성에 비교하여 상대적으로 낮은 인장물성은 WeibuH 통계 처리 방법에 의하여 응력을 받고 있는 부피의 차로 정량적으로 해석하였다. 해석 결과, 직포가 충으로 배열된 복합체의 최대 인장강도는 응력을 받는 섬유의 길이에 의존하며, 기지내 균열이 생기는 첫번째 응력은 응력을 받는 부피에 의해 결정됨을 보여주었다. SiC 휘스 커를 기지에 보장함으로써 복합체의 기지파괴 strain을 향상시키는 이유로, 첫번째 기지 균일 응력이 증가됨을 확인하였다.

  • PDF

고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구 (Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment)

  • 김대훈;엄재원;고영종;이강일
    • 한국지반신소재학회논문집
    • /
    • 제17권4호
    • /
    • pp.169-177
    • /
    • 2018
  • 유리섬유강화폴리에스테르 복합소재는 지중 매설 파이프, 탱크용 구조재, 선체 등 가혹한 환경에서 구조재로 널리 사용되고 있으며, 장기 내수성을 필요로 하는 소재이다. 특히, 물에 잠겨 있을 때 삼투압으로 인하여 겔코트와 복합소재의 박리 등 열화가 진행된다. 본 연구에서는 지중 매설 파이프로 활용되는 GFRP 복합소재의 내구성 향상을 위해 인퓨전(진공성형) 공정으로 UPE (unsaturated polyester) 겔코트 표면 처리한 복합소재를 제작하여, 고온 수침 환경 ($65^{\circ}C$, $75^{\circ}C$, $85^{\circ}C$)에서의 표면 결함 및 크랙 발생과 경도 변화 특성을 확인하였다. 마이크로 CT 단층 촬영을 통하여 수침 온도에 따른 크랙의 침투 깊이를 조사하였으며, $75^{\circ}C$$85^{\circ}C$ 조건에서 크랙이 복합소재까지 침투하여 내구성을 저하시키는 것으로 확인되었다. 최초 크랙이 발생하는 지점을 고장시간으로 정의하고 아레니우스식을 활용하여 $23^{\circ}C$ 상온에서의 수명 예측을 실시하였다. 본 연구로 토목, 건축, 해양산업분야 등 겔코트가 적용되는 다양한 산업분야의 신뢰성 평가에 응용될 수 있을 것으로 기대된다.

CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구 (Optimal Design of Deep-Sea Pressure Hulls using CAE tools)

  • 정한구;팡가니반 헨리
    • 한국전산구조공학회논문집
    • /
    • 제25권6호
    • /
    • pp.477-485
    • /
    • 2012
  • 내압구조물의 구조적 성능에 영향을 주는 주요 요소로 형상, 쉘 두께, 보강재 배치 안 그리고 제작 재료 등을 나열할 수 있다. 전통적인 이론적 방법론에 근거한 내압구조물의 설계는 신속하며 만족할 만한 결과를 제공하지만 이는 일부 특정한 형상, 쉘 두께 및 제작 재료 등에 제한되어 있다. 본 논문에서는 최적화된 형상, 쉘 두께, 보강재 배치 안 그리고 복합재료 적층 정보 등을 얻을 수 있는 최적설계 기법에 근거한 진보된 대체 방법론을 다루고 있다. CAE 기반의 최적설계 기법을 활용하여 내압구조물 설계에 요구되는 구조적 성능과 최적화된 설계 인자들을 얻었다. 상용화된 유한요소 프로그램임 ANSYS의 CAE 플랫폼으로부터 메타모델 기반 최적화 기법을 수행하여 원통형 내압구조물의 설계를 위한 최적의 타원형 형상을 결정하였다. 또한 최적설계 프로그램인 OptiStruct의 기울기 기반 최적설계 방법을 이용하여 복합재료 기반 내압구조물의 설계시 최적의 적층순서와 쉘 두께가 얇은 내압구조물에 대한 최적의 보강재 배치 안을 각각 도출하였다. 최적설계 예제를 통해 본 논문에서 제시하고 있는 최적설계 기법에 근거한 방법론이 내압구조물의 설계에 효과적임을 확인할 수 있었다.

잉여 전기 저항 측정을 이용한 탄소 섬유 강화 복합재의 파손 측정 (Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement)

  • 강지호
    • 비파괴검사학회지
    • /
    • 제29권4호
    • /
    • pp.323-330
    • /
    • 2009
  • 본 연구의 목적은 전기 저항 측정을 통한 탄소 섬유 강화 복합재의 파손 감지를 위한 효과적인 방법을 개발하는 것이다. 이를 위하여 복합재 적층판에 특정 파손을 인위적으로 모사하고 전기 저항의 변화와 모사된 파손과의 관계를 정립하려 하였다. 많은 량의 측정치를 효과적으로 처리하기 위하여 자동화된 측정 시스템을 개발하였다. 전기 저항 측정을 위하여 시편 표면에 전극을 제작하는 방법을 개발하였다. 쿠폰과 평판형태의 탄소 섬유 강화 복합재 적층 시편에 인위적인 파손을 부과하고 전기 저항을 측정하고 그 결과를 후처리하는 과정으로 파손을 검출하였다. 쿠폰 형태의 시편은 제작시에 다양한 크기의 테플론 필름을 삽입하여 층간 분리를 모사하였다. 전기 저항 측정 결과 층간 분리 크기가 증가함에 따라 전기 저항도 증가하는 경향을 보였으며, 이를 통해 층간 분리의 존재와 그 크기를 검출할 수 있음을 보였다. 평판 시편은 초기에는 인위적인 파손 없이 제작하여 전기저항을 측정하고, 이후 특정 위치에 원공을 뚫고 원공의 직경을 증가시켜 가며 전기저항의 변화를 관찰하였다. 실험에 사용한 평판은 각 변에 6개의 전극을 설치하여 총 24개의 전극을 갖도록 하였으며 수직, 수평, 대각선 방향의 전극간의 전기 저항을 측정하였다. 측정 결과는 탄소 섬유 강화 복합재 구조물의 파손 검출을 위하여 전기 저항 측정법의 가능성을 보였다.

Metal과 Metal Oxidefh 구성된 복합구조의 Peel Strength (Peel strengths of the Composite Structure of Metal and Metal Oxide Laminate)

  • 신형원;정택균;이효수;정승부
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.13-16
    • /
    • 2013
  • 양극산화(anodization)공정으로 제작된 규칙성 나노구조의 다공성 산화알루미늄(Aluminum Anodic Oxide, AAO)는 공정이 적용된 LED 모듈은 비교적 쉽고 경제적이므로 최근 LED용 방열소재로 응용하기 위하여 다양하게 연구가 진행되고 있다. 일반적으로 LED 모듈은 알루미늄/폴리머/구리 회로층으로 구성되며 절연체 역할을 하는 폴리머는 히트스프레더로 구성되어있다. 그러나 열전도도가 낮은 폴리머로 인하여 LED부품의 열 방출이 원활하지 못하므로 LED의 수명단축 및 오작동에 영향을 미친다. 따라서, 본 연구에서는 폴리머 대신 상대적으로 열전도도가 우수한 AAO를 양극산화 공정으로 제작하여 히트스프레더(heat spread)로 사용하였다. 이때, AAO와 금속인 구리 회로층간의 접착력을 향상시키기 위하여 스퍼터링 DBC(direct bonding copper)법으로 시드층(seed layer)을 형성한 뒤 최종적으로 전해도금공정으로 구리회로층을 형성하였다. 본 연구에서는 양극 산화공정으로 AAO와 금속간의 접착강도를 개선하여 1.18~1.45 kgf/cm와 같은 우수한 peel strength 값을 얻었다.

우레탄 폼 코아 샌드위치 구조물의 정적 및 피로 특성 (Static and Fatigue Characteristics of Urethane Foam Cored Sandwich Structures)

  • 김재훈;이영신;박병준;김덕회;김영기
    • Composites Research
    • /
    • 제12권6호
    • /
    • pp.74-82
    • /
    • 1999
  • 폴리 우레탄 폼 코아 샌드위치 복합재료의 정적 및 피로 특성에 대하여 연구하였다. 유리 섬유강화 스킨과 중합의 폼 코아를 갖는 비스티칭, 스티칭, 스티프너의 세 종류 시편이 사용되었다. 특히 스티칭 샌드위치 구조는 두께 방향에 대하여 폴리에스터와 유리섬유를 꼬아서 부가적인 구조 보강이 코아의 상하 표면을 통하여 꿰멘 구조로 층간분리를 최소화하기 위해 샌드위치 구조 패널을 스티칭하여 만들고 수지는 수지의 유동 온도에서 수지의 낮은 점도 특성을 이용하여 스티칭 섬유에 침투시켜 함께 경화하였다. 스티칭 섬유가 $50{\times}50{\;}mm$의 간격으로 스티칭된 시편 및 스티프너 시편의 굽힘강도는 비스티칭 시편과 비교하여 각각 50%및 10배 이상으로 향상되었다. 최대 하중의 20%크기로 $10^6$ 피로 사이클을 받은 후, 비스티칭 시편의 굽힘 피로강도는 정적 굽힘강도와 비교하여 27%까지 감소되었고, 스티칭된 시편은 39%,그리고 스티프너에 의하여 보강된 시편은 20%정도 감소되었다. 폴리우레탄 폼 코아의 에이징 효과를 입증하기 위해, 피로 시험 후 샌드위치 시편의 표면 적층의 손상은 초음파 C-scan장비를 사용하여 검출하였다. 초음파 C-scan결과로부터 피로 시험동안 손상 받은 어떤 결함도 없었다 이는 피로 사이클동안 폼 코아 샌드위치 구조에 대한 굽힘강도의 감소는 폴리우레탄 폼이 에이징되어 발생하는 것을 의미한다.

  • PDF

저온과 고온 환경 하에서 카본/에폭시 복합재의 기계적 물성 평가 (Evaluation of Mechanical Properties of Carbon/Epoxy Composites Under In situ Low- and High-Temperature Environments)

  • 임재문;신광복;황태경
    • 대한기계학회논문집A
    • /
    • 제39권6호
    • /
    • pp.567-573
    • /
    • 2015
  • 본 논문은 저온과 고온 환경 하에서 카본/에폭시 복합재의 기계적 물성 변화를 평가하는데 목적을 두고 있다. 기계적 물성 변화 평가는 환경 챔버와 전기로를 이용하여 $-40^{\circ}C$에서 $220^{\circ}C$까지의 온도에 대해 섬유방향과 섬유 직각방향의 인장 물성, 면내 전단 물성 그리고 층간전단강도에 대해 평가를 수행하였다. $-40^{\circ}C$ 저온환경에서의 기계적 물성은 상온에서의 물성보다 증가하는 것을 확인하였다. 섬유방향 물성은 온도가 증가함에 따라 물성저하가 서서히 발생하였으나, 섬유직각방향 물성, 면내전단 물성 그리고 층간전단강도는 $140^{\circ}C$ 이상의 온도에서 수지의 유리전이로 인해 급격한 물성저하가 발생하는 것을 확인하였다. $100^{\circ}C$ 환경에서 섬유 직각방향 인장물성 증가의 직접적인 원인은 수지의 후경화로 인한 현상으로 판단된다.

쉘요소를 활용한 STF 함침된 Kevlar Fabric의 방탄해석 (Collision Analysis of STF Impregnated Kevlar Fabric Using the 3D-Shell Element)

  • 이덕규;박종규;정의경;이만영;김시조;문상호;손권중;조희근
    • Composites Research
    • /
    • 제29권1호
    • /
    • pp.24-32
    • /
    • 2016
  • 본 연구에서는 3D 아이소파라메트릭 쉘요소 모델을 사용하여 전단농화유체(STF: shear thickening fluid)가 함침된 케블라 페브릭(Kevlar fabric) 복합재의 방탄성능에 대하여 해석을 수행하였다. 다양한 적층복합재(12, 18, 20, 24-layer)를 대상으로 탄두 초기속도에 따른 충돌 후 속도(Residual velocity)를 측정하여 실험치와 비교하였다. SFT가 함침된 복합재의 방탄 성능의 효과를 검증하기 위하여 다양한 속도영역에서 STF가 함침된 것과 함침 되지 않은 것의 방탄성능을 비교하였다. STF가 함침된 케블라 페브릭은 450 m/s 이하의 저속에서는 비교적 큰 마찰효과를 일으키며 고속에서는 STF가 함침된 Kevlar fabric의 마찰효과는 기대할 수 없는 수준으로 오히려 역효과를 일으키는 것을 확인할 수 있었다. 연구를 통해 STF가 함침된 케블라 페브릭의 특성을 퇴화 3D 쉘 요소를 사용하여 효과적으로 모사할 수 있었으며, 실험 치와의 결과 비교를 통하여 그 유효성을 검증하였다.

GFRP보강적층목재핀의 휨강도 및 인장형 전단내력 성능평가 (Performance Evaluation for Bending Strength and Tensile Type Shear Strength of GFRP Reinforced Laminated Wooden Pin)

  • 송요진;정홍주;김대길;김상일;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권3호
    • /
    • pp.258-265
    • /
    • 2014
  • 목구조물 접합부에 기존 드리프트핀(Drift pin)을 대체하고자 단판이나 합판을 유리섬유강화플라스틱(GFRP: Glass fiber reinforced plastic)과 복합 적층시킨 GFRP보강적층목재핀을 제작하였다. 더불어 GFRP보강적층목재핀을 사용하여 집성재 접합부의 인장형 전단내력 시험을 실시하였다. GFRP 배열에 따른 보강적층목재핀의 휨강도 시험결과 GFRP를 각층에 1장씩 삽입한 시험편(Type-A)이 가장 양호한 성능을 발휘하였다. 또한 압체압력 $1.96N/mm^2$, 온도 $150^{\circ}C$에서 한 시간 열압하여 고밀화한 시험편이 고밀화하지 않은 시험편과 비교하여 휨강도 성능이 1.57배 향상됨을 확인하였으며, 하중방향에 따라 Edgewise가 Flatwise보다 3.51배 높은 성능을 발휘하였다. 시험을 통해 가장 양호한 성능을 보인 Type-A 보강적층목재핀을 이용하여 전단내력 시험을 실시하였다. 접합구의 종류와 접합판의 종류를 달리하여 시험한 결과 드리프트핀과 강판을 적용한 시험체(Type-DS)와 비교하여 GFRP보강적층목재핀과 GFRP보강목재적층판을 적용한 시험체(Type-WL)가 1.12배 높은 전단내력이 측정되었으며 최대하중 이후에도 매우 양호한 인성이 관찰되었다.

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.