DOI QR코드

DOI QR Code

Evaluation of Mechanical Properties of Carbon/Epoxy Composites Under In situ Low- and High-Temperature Environments

저온과 고온 환경 하에서 카본/에폭시 복합재의 기계적 물성 평가

  • Received : 2014.12.22
  • Accepted : 2015.04.01
  • Published : 2015.06.01

Abstract

This paper aims to evaluate the variation in the mechanical properties of carbon/epoxy composites under in situ low- and high-temperature environments. In situ low- and high-temperature environments were simulated with temperature ranging from $-40^{\circ}C$ to $220^{\circ}C$ using an environmental chamber and furnace. The variation in the mechanical properties of the composites was measured for longitudinal and transverse tensile properties, in-plane shear properties and interlaminar shear strength. Under the low temperature of $-40^{\circ}C$, all mechanical properties increased moderately compared to the baseline properties measured at room temperature. The changes in the longitudinal tensile properties decreased moderately with increasing temperature. However, transverse tensile properties, in-plane shear properties and interlaminar shear strength each showed a significant drop due to the glass transition behavior of the matrix after $140^{\circ}C$. Notably, the tensile property value near $100^{\circ}C$ increased compared to baseline property value, which was an unusual occurrence. This behavior was a direct result of post-curing of the epoxy resin due to its exposure to high temperature.

본 논문은 저온과 고온 환경 하에서 카본/에폭시 복합재의 기계적 물성 변화를 평가하는데 목적을 두고 있다. 기계적 물성 변화 평가는 환경 챔버와 전기로를 이용하여 $-40^{\circ}C$에서 $220^{\circ}C$까지의 온도에 대해 섬유방향과 섬유 직각방향의 인장 물성, 면내 전단 물성 그리고 층간전단강도에 대해 평가를 수행하였다. $-40^{\circ}C$ 저온환경에서의 기계적 물성은 상온에서의 물성보다 증가하는 것을 확인하였다. 섬유방향 물성은 온도가 증가함에 따라 물성저하가 서서히 발생하였으나, 섬유직각방향 물성, 면내전단 물성 그리고 층간전단강도는 $140^{\circ}C$ 이상의 온도에서 수지의 유리전이로 인해 급격한 물성저하가 발생하는 것을 확인하였다. $100^{\circ}C$ 환경에서 섬유 직각방향 인장물성 증가의 직접적인 원인은 수지의 후경화로 인한 현상으로 판단된다.

Keywords

References

  1. Oh, J. O., Yoon, S. H., Lee, S. W., Ahn, C. W. and Hwang, T. K., 2012, "Prediction of High Temperature Tensile Strengths for Carbon Fiber/Epoxy Composite," Fall Conference of The Korean Society of Propulsion Engineers, pp. 665-667.
  2. Song, M. G., Kweon, J. H., Choi, J. H., Kim, H. J., Song, M. H., Shin, S. J. and Byun, J. H., 2010, "Hygrothermal Effect on the Strength of Carbon/Epoxy Composite Single-Lap Bonded Joints," The Korean Society for Aeronautical & Space Sciences, Vol. 38, No. 2, pp. 119-128. https://doi.org/10.5139/JKSAS.2010.38.2.119
  3. Kil, H. B. and Yoon, S. H., 2012, "Test Method for Composites Material Properties under High Temperature(I)," Spring Conference of The Korean Society of Propulsion Engineers, pp. 259-261.
  4. Yang, I. Y. and Park, C. S., 1994, "A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates under High Temperature," Trans. Korean Soc. Mech. Eng., Vol. 18, No. 8, pp. 1930-1938. https://doi.org/10.22634/KSME.1994.18.8.1930
  5. Cavdar, A., 2012, "A Study on the Effects of High Temperature on Mechanical Properties of Fiber Reinforced Cementitious Composites," Composites: Part B, Vol. 43, pp. 2452-2463. https://doi.org/10.1016/j.compositesb.2011.10.005
  6. Gibson, A. G., Otheguy Torres, M. E., Browne, T. N. A., Feih, S. and Mouritz, A. P., 2010, "High Temperature and Fire Behaviour of Continuous Glass Fibre/Polypropylene Laminates," Composites : Part A, Vol. 41, pp. 1219-1231. https://doi.org/10.1016/j.compositesa.2010.05.004
  7. Hinz, S., Omoori, T., Hoio, M. and Schulte, K., 2009, "Damage Characterisation of Fiber Metal Laminates under Interlaminar Shear Load," Composites: Part A, Vol. 40, pp. 925-931. https://doi.org/10.1016/j.compositesa.2009.04.020
  8. Ogihara, S., Takeda, N., Kobayashi, S. and Kobayashi, A., 1999, "Effects of Stacking Sequence on Microscopic Fatigue Damage Development in Quasi-Isotropic CFRP Laminates with Interlaminar-Toughened Layers," Composite Science and Technology, Vol. 59, pp. 1387-1398. https://doi.org/10.1016/S0266-3538(98)00180-8
  9. Buxton, A. and Baillie, C., 1994, " A Study of the Influence of the Environment on the Measurement of Interfacial Properties of Carbon Fiber/Epoxy Resin Composites," Composites, Vol. 25, No. 7, pp. 604-608. https://doi.org/10.1016/0010-4361(94)90190-2
  10. Huh, Y. H., Kim, J. I., Kim, D. J. and Lee, G. C., 2012, "Temperature-Dependency of Tensile Properties of GFRP Composite for Wind Turbine Blades," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 9, pp. 1053-1057. https://doi.org/10.3795/KSME-A.2012.36.9.1053
  11. Hwang, T. K., Park, J. B., Lee, S. Y., Kim, H. G., Park, B. Y. and Doh, Y. D., 2005, "Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature," Journal of the Korean Society for Composite Materials, Vol. 18, No. 2, pp. 20-29.
  12. ASTM International, 2000, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," ASTM D3039.
  13. ASTM International, 2000, "Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates," ASTM D2344.
  14. ASTM International, 2001, "Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ${\pm}45^{\circ}$ Laminates," ASTM D3518.
  15. Kim, D. J., Choi, N. S. and Yun, Y. J., 2007, "Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test," Trans. Korean Soc. Mech. Eng. A, Vol. 31, No. 3, pp. 295-303. https://doi.org/10.3795/KSME-A.2007.31.3.295

Cited by

  1. Prediction of onset and propagation of damage in the adhesive joining of a dome-separated composite pressure vessel including temperature effects vol.18, pp.12, 2017, https://doi.org/10.1007/s12541-017-0208-z