• Title/Summary/Keyword: Composite Index

Search Result 748, Processing Time 0.021 seconds

Land-use Mapping and Change Detection in Northern Cheongju Region (청주 북부지역의 토지이용 매핑과 변화탐지)

  • Na, Sang-Il;Park, Jong-Hwa;Shin, Hyoung-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.61-69
    • /
    • 2008
  • Land-use in northern Cheongju region is changing rapidly because of the increased interactions of human activities with the environment as population increases. Land-use change detection is considered essential for monitoring the growth of an urban complex. The analysis was undertaken mainly on the basis of the multi-temporal Landsat images (1991, 1992 and 2000) and DEM data in a post-classification analysis with GIS to map land-use distribution and to analyse factors influencing the land-use changes for Cheongju city. The area of each land-use category was also calculated for monitoring land-use changes. Land-use statistics revealed that substantial land-use changes have taken place and that the built-up areas have expanded by about $17.57km^2$ (11.47%) over the study period (1991 - 2000). This study illustrated an increasing trend of urban and barren lands areas with a decreasing trend of agricultural and forest areas. Land-use changes from one category to others have been clearly represented by the NDVI composite images, which were found suitable for delineating the development of urban areas and land use changes in northern Cheongju region. Rapid economic developments together with the increasing population were noted to be the major factors influencing rapid land use changes. Urban expansion has replaced urban and barren lands.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

Information Cascade and Share Market Volatility: A Chinese Perspective

  • Hong, Hui
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.3 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • The purpose of this paper is to understand the underlying dynamics for the share market bubbles in China during the most recent decade. By using the behavioral finance theory and the Shanghai Composite index prices during the periods from 2005 to 2008 and from 2014 to 2015 as the study samples, we find that the large volatilities in the Chinese share market are closely related to information blockage, which impedes share prices to timely respond to economic conditions as well as external shocks and increases (decreases) the demand of shares when the supply is difficult to adjust. Although the Chinese government has introduced a series of programs designed to increase more reliable information to the public, the share market still tends to confront issues of information asymmetry. The potential reason is that the reforms did not change the long-stand situation in China, where individuals or groups related to government bureaucracy who play a dominant role in the society are given priority to gain access and obtain information that benefits. By identifying the main reasons for the large volatilities in the market, policy makers are given advice as to which areas they may need to focus on to improve future market performance.

Unemployment Insurance Take-up Rates in Korea (한국의 구직급여 수급률 결정요인 분석)

  • Lee, Daechang
    • Journal of Labour Economics
    • /
    • v.39 no.1
    • /
    • pp.1-31
    • /
    • 2016
  • This paper investigates the cyclical behavior of UI benefit take-up rate, the share of unemployed persons who are eligible for job seekers' allowances(JSA) and actually receive them. Using Korea's Employment Insurance DB, it also identifies the factors linked to the decision to take up job seekers' allowances. The results show that the take-up rate is countercyclical and leads both unemployment rate and Coincident Composite Index cyclical component by 6 months and is positively correlated with replacement rate and benefit duration, suggesting that extending benefit duration and raising benefit level can boost benefit claims to increase take-up rates in Korea.

  • PDF

Effect of Microstructure on Conductivity of W-Cu Composite (W-CU 복합재료의 전도도에 미치는 미세조직의 영향)

  • Lee Young Jung;Park Kwang Hyun;Lee Byung Hoon;Kim Deok-Soo;Kim Young Do
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.85-88
    • /
    • 2005
  • [ $W-15wt.\%$ ] Cu nanocomposite powders are fabricated by ball-milling and subsequent hydrogen-reduction. The compacted parts of $W-15wt.\%Cu$ nanocomposite powders were sintered at $1200^{\circ}C$ for 1 h with various heating rates of 5 and $20^{\circ}C/min$. The homogeneity of the sintered microstructures was evaluated through homogeneity index by the standard deviation of Victor's hardness test. The W-W contiguities were calculated by using Voronoi diagrams. The sintered microstructure with the heating rate of $20^{\circ}C/min$ was more homogeneous and had lower W-W contiguity than that of $5^{\circ}C/min$. The microstructural homogeneity was directly related to the W-W contiguity. Thermal conductivity of the sintered parts with the heating rate of $20^{\circ}C/min$ was higher than that with heating rate of $5^{\circ}C/min$. This phenomenon indicates that the thermal conductivity is affected by the W-W contiguity resulting from the homogeneity of the sintered microstructure.

Development of Outbound Tourism Forecasting Models in Korea

  • Yoon, Ji-Hwan;Lee, Jung Seung;Yoon, Kyung Seon
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.1
    • /
    • pp.177-184
    • /
    • 2014
  • This research analyzes the effects of factors on the demands for outbound to the countries such as Japan, China, the United States of America, Thailand, Philippines, Hong Kong, Singapore and Australia, the countries preferred by many Koreans. The factors for this research are (1) economic variables such as Korea Composite Stock Price Index (KOSPI), which could have influences on outbound tourism and exchange rate and (2) unpredictable events such as diseases, financial crisis and terrors. Regression analysis was used to identify relationship based on the monthly data from January 2001 to December 2010. The results of the analysis show that both exchange rate and KOSPI have impacts on the demands for outbound travel. In the case of travels to the United States of America and Philippines, Korean tourists usually have particular purposes such as studying, visiting relatives, playing golf or honeymoon, thus they are less influenced by the exchange rate. Moreover, Korean tourists tend not to visit particular locations for some time when shock reaction happens. As the demands for outbound travels are different from country to country accompanied by economic variables and shock variables, differentiated measure to should be considered to come close to the target numbers of tourists by switching as well as creating the demands. For further study we plan to build outbound tourism forecasting models using Artificial Neural Networks.

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Truss structure damage identification using residual force vector and genetic algorithm

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.485-496
    • /
    • 2017
  • In this paper, damage detection has been introduced as an optimization problem and a two-step method has been proposed that can detect the location and severity of damage in truss structures precisely and reduce the volume of computations considerably. In the first step, using the residual force vector concept, the suspected damaged members are detected which will result in a reduction in the number of variables and hence a decrease in the search space dimensions. In the second step, the precise location and severity of damage in the members are identified using the genetic algorithm and the results of the first step. Considering the reduced search space, the algorithm can find the optimal points (i.e. the solution for the damage detection problem) with less computation cost. In this step, the Efficient Correlation Based Index (ECBI), that considers the structure's first few frequencies in both damaged and healthy states, is used as the objective function and some examples have been provided to check the efficiency of the proposed method; results have shown that the method is innovatively capable of detecting damage in truss structures.