DOI QR코드

DOI QR Code

Effect of Microstructure on Conductivity of W-Cu Composite

W-CU 복합재료의 전도도에 미치는 미세조직의 영향

  • Lee Young Jung (Division of Materials Science and Engineering, Hanyang University) ;
  • Park Kwang Hyun (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee Byung Hoon (Department of Industrial Engineering, Hanyang University) ;
  • Kim Deok-Soo (Department of Industrial Engineering, Hanyang University) ;
  • Kim Young Do (Division of Materials Science and Engineering, Hanyang University)
  • Published : 2005.02.01

Abstract

[ $W-15wt.\%$ ] Cu nanocomposite powders are fabricated by ball-milling and subsequent hydrogen-reduction. The compacted parts of $W-15wt.\%Cu$ nanocomposite powders were sintered at $1200^{\circ}C$ for 1 h with various heating rates of 5 and $20^{\circ}C/min$. The homogeneity of the sintered microstructures was evaluated through homogeneity index by the standard deviation of Victor's hardness test. The W-W contiguities were calculated by using Voronoi diagrams. The sintered microstructure with the heating rate of $20^{\circ}C/min$ was more homogeneous and had lower W-W contiguity than that of $5^{\circ}C/min$. The microstructural homogeneity was directly related to the W-W contiguity. Thermal conductivity of the sintered parts with the heating rate of $20^{\circ}C/min$ was higher than that with heating rate of $5^{\circ}C/min$. This phenomenon indicates that the thermal conductivity is affected by the W-W contiguity resulting from the homogeneity of the sintered microstructure.

Keywords

References

  1. S. Yoo, M. S. Krupashankara, T. S. Sudarshan and R. J. Dowding, Mater. Sci. and Tech., 14, 170 (1998) https://doi.org/10.1179/mst.1998.14.2.170
  2. K. V. Sebastian, Int. J. of Powder Metall. & Powder Tech., 17(4), 297 (1981)
  3. B. L. Mordike, J. Kaczmar, M. Kielbinski and K. U. Kainer, Powder Metall. Int., 23, 91 (1991)
  4. Y. D. Kim, N. L. Oh, S. T. Oh and I. H. Moon, Mater. Letters, 51, 420 (2001) https://doi.org/10.1016/S0167-577X(01)00330-5
  5. Z. Fan, Acta Metall. Mater., 43, 43 (1994) https://doi.org/10.1016/0956-7151(95)90259-7
  6. J. C. Y. Koh and A. Fortini, Int. J. Heat Mass Transfer, 16 2013 (1973) https://doi.org/10.1016/0017-9310(73)90104-X
  7. Scorey, US patent 5912399
  8. R. M. German, Metall. Trans. 24A, 1745 (1993)
  9. C. M. Mari and G. Dotelli, Solid State Ionics, 136-137, 1315 (2000) https://doi.org/10.1016/S0167-2738(00)00604-4
  10. D. S. Kim, Y. C. Chung, J. J. Kim, D. Kim and K. S. Yu, J. of Ceramic Processing Research, 3(3), 150 (2002)
  11. D. S. Kim, D. Kim and K. Sugihara, Computer Aided Geometric Design, 18, 541 (2001) https://doi.org/10.1016/S0167-8396(01)00050-4
  12. D. S. Kim, D. Kim and K. Sugihara, Computer Aided Geometric Design, 18, 563 (2001) https://doi.org/10.1016/S0167-8396(01)00051-6
  13. D. G. Kim, K. W. Lee, S. T. Oh and Y. D. Kim, Mater. Lett., 58, 1199 (2004) https://doi.org/10.1016/j.matlet.2003.08.035
  14. D. G. Kim, G. S. Kim, S. T. Oh and Y. D. Kim, Mater. Lett., 58, 578 (2004) https://doi.org/10.1016/j.matlet.2003.07.044
  15. K. V. Sebastian and G. S. Tendolkar, Intern. J. Powder Metall. & Powder Tech., 15, 45 (1979)
  16. J. Blumm, J. B. Henderson, O. Nilsson and J. Fricke, High Temperature-High Pressures, 29, 555 (1997) https://doi.org/10.1068/htec141
  17. R. E. Taylor, Mater. Sci. & Eng., A245, 160 (1998)
  18. H. J. Lee and R. E. Taylor, Mater. Sci. Eng., A245, 1745 (1998)
  19. D. G. Kim, G. S. Kim, M. J. Suk, S. T Oh and Y. D. Kim, Scripata Mater., 51, 677 (2004) https://doi.org/10.1016/j.scriptamat.2004.06.014
  20. I. H. Moon, S. S. Ryu, S. W. Kim, D. M. Won and W. S. Jang, Z. Metallkd., 92, 986 (2001)
  21. R. M. German, Sintering Theory and Practice, John Wiley & Sons, INC. New York, 256 (1996)
  22. R. E. Hummel, Electronic Properties of Materials, 3rd ed., Springer-Verlag, New York, 367 (2001)