• Title/Summary/Keyword: Composite Function

Search Result 1,244, Processing Time 0.029 seconds

A Design of Authentication/Security Processor IP for Wireless USB (무선 USB 인증/보안용 프로세서 IP 설계)

  • Yang, Hyun-Chang;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2031-2038
    • /
    • 2008
  • A small-area and high-speed authentication/security processor (WUSB_Sec) IP is designed, which performs the 4-way handshake protocol for authentication between host and device, and data encryption/decryption of wireless USB system. The PRF-256 and PRF-64 are implemented by CCM (Counter mode with CBC-MAC) operation, and the CCM is designed with two AES (Advanced Encryption Standard) encryption coles working concurrently for parallel processing of CBC mode and CTR mode operations. The AES core that is an essential block of the WUSB_Sec processor is designed by applying composite field arithmetic on AF$(((2^2)^2)^2)$. Also, S-Box sharing between SubByte block and key scheduler block reduces the gate count by 10%. The designed WUSB_Sec processor has 25,000 gates and the estimated throughput rate is about 480Mbps at 120MHz clock frequency.

A novel method to aging state recognition of viscoelastic sandwich structures

  • Qu, Jinxiu;Zhang, Zhousuo;Luo, Xue;Li, Bing;Wen, Jinpeng
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1183-1210
    • /
    • 2016
  • Viscoelastic sandwich structures (VSSs) are widely used in mechanical equipment, but in the service process, they always suffer from aging which affect the whole performance of equipment. Therefore, aging state recognition of VSSs is significant to monitor structural state and ensure the reliability of equipment. However, non-stationary vibration response signals and weak state change characteristics make this task challenging. This paper proposes a novel method for this task based on adaptive second generation wavelet packet transform (ASGWPT) and multiwavelet support vector machine (MWSVM). For obtaining sensitive feature parameters to different structural aging states, the ASGWPT, its wavelet function can adaptively match the frequency spectrum characteristics of inspected vibration response signal, is developed to process the vibration response signals for energy feature extraction. With the aim to improve the classification performance of SVM, based on the kernel method of SVM and multiwavelet theory, multiwavelet kernel functions are constructed, and then MWSVM is developed to classify the different aging states. In order to demonstrate the effectiveness of the proposed method, different aging states of a VSS are created through the hot oxygen accelerated aging of viscoelastic material. The application results show that the proposed method can accurately and automatically recognize the different structural aging states and act as a promising approach to aging state recognition of VSSs. Furthermore, the capability of ASGWPT in processing the vibration response signals for feature extraction is validated by the comparisons with conventional second generation wavelet packet transform, and the performance of MWSVM in classifying the structural aging states is validated by the comparisons with traditional wavelet support vector machine.

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.

Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions

  • Tonyali, Zeliha;Ates, Sevket;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated for variable local soil cases and wave velocities. Quincy Bay-view cable-stayed bridge built on the Mississippi River in Illinois, USA selected as a numerical example. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. The spatial variability of the ground motion is considered with the coherency function, which is represented by the components of incoherence, wave-passage and site-response effects. The incoherence effect is investigated by considering Harichandran and Vanmarcke model, the site-response effect is outlined by using hard, medium and soft soil types, and the wave-passage effect is taken into account by using 1000, 600 and 200 m/s wave velocities for the hard, medium and soft soils, respectively. Mean of maximum response values obtained from the analyses are compared with those of the specific cases of the ground motion model. It is concluded that the obtained results from the bridge model increase as the differences between local soil conditions cases of the bridge supports change from firm to soft. Moreover, the variation of the wave velocity has important effects on the responses of the deck and towers as compared with those of the travelling constant wave velocity case. In addition, the variability of the ground motions should be considered in the analysis of long span cable-stayed bridges to obtain more accurate results in calculating the bridge responses.

Effects on Addition of Metal Oxides with Low Workfunctions on the Ca-Sr-Ba Oxide Cathodes for VUV Ionizers (VUV 이오나이저용 Ca-Sr-Ba계 산화물 캐소드에 낮은 일함수를 갖는 금속산화물 첨가의 영향)

  • Park, Seung-Kyu;Lee, Jonghyuk;Kim, Ran Hee;Jung, Juhyoung;Han, Wan Gyu;Lee, Soo Huan;Jeon, Sung Woo;Kim, Dae Jun;Kim, Do-Yun;Lee, Kwang-Sup
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.241-251
    • /
    • 2019
  • There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(${\sim}10^{-6}torr$). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.

Evaluation of 3D concrete printing performance from a rheological perspective

  • Lee, Keon-Woo;Lee, Ho-Jae;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The objective of this study was to derive a cementitious material for three-dimensional (3D) concrete printing that fulfills key performance functions, extrudability, buildability and bondability for 3D concrete printing. For this purpose, the rheological properties shown by different compositions of cement paste, the most fundamental component of concrete, were assessed, and the correlation between the rheological properties and key performance functions was analyzed. The results of the experiments indicated that the overall properties of a binder have a greater influence on the yield stress than the plastic viscosity. When the performance of a cementitious material for 3D printing was considered in relation with the properties of a binder, a mixture with FA or SF was thought to be more appropriate; however, a mixture containing GGBS was found to be inappropriate as it failed to meet the required function especially, buildability and extrudability. For a simple quantitative evaluation, the correlation between the rheological parameters of cementitious materials and simplified flow performance test results-time taken to reach T-150 and the number of hits required to reach T-150-in consideration of the flow of cementitious materials was compared. The result of the analysis showed a high reliability for the correlation between the rheological parameters and the time taken to reach T-150, but a low reliability for the number of hits needed for the fluid to reach T-150. In conclusion, among several performance functions, extrudability and buildability were mainly assessed based on the results obtained from various formulations from a rheological perspective, and the suitable formulations of composite materials for 3D printing was derived.

Studies on Improved Amylases Developed by Protoplast Fusion of Aspergillus species

  • Adeleye, Tolulope Modupe;Kareem, Sharafadeen Olateju;Olufunmilayo, Bankole Mobolaji;Atanda, Olusegun;Osho, Michael Bamitale;Dairo, Olawale
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • Improved amylases were developed from protoplast fusants of two amylase-producing Aspergillus species. Twenty regenerated fusants were screened for amylase production using Remazol Brilliant Blue agar. Crude enzyme extracts produced by solid state fermentation of rice bran were assayed for activity. Three variable factors (temperature, pH and enzyme type) were optimized to increase the amylase activity of the parents and selected fusants using rice bran medium and solid state fermentation. Analysis of this optimization was completed using the Central Composite Design (CCD) of the Response Surface Methodology (RSM). Amylase activity assays conducted at room temperature and 80℃ demonstrated that Aspergillus designates, T5 (920.21 U/ml, 966.67 U/ml), T13 (430 U/ml, 1011.11 U/ml) and T14 (500.63 U/ml, 1012.00 U/ml) all exhibited improved function making them the preferred fusants. Amylases produced from these fusants were observed to be active over the entire pH range evaluated in this study. Fusants T5 and T14 demonstrated optimal activity under acidic and alkaline conditions, respectively. Fusants T13 and T14 produced the most amylase at 72 h while parents TA, TC and fusant T5 produced the most amylase after 96 h of incubation. Response surface methodology examinations revealed that the enzyme from fusant T5 was the optimal enzyme demonstrating the highest activity (1055.17 U/ml) at pH 4 and a temperature of 40℃. This enzyme lost activity with further increases in temperature. Starch hydrolysis using fusant T5 gave the highest yield of glucose (1.6158 g/100 ml). The significant activities of the selected fusants at 28 ± 2℃ and 80℃ and the higher sugar yields from cassava starch hydrolysis over their parental strains indicate that it is possible to improve amylase activity using the protoplast fusion technique.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

A Study on Improving Usability of Webdewey for Learners (학습자를 위한 웹듀이의 사용성 증진 방안 연구)

  • Baek, Ji-won
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.2
    • /
    • pp.75-95
    • /
    • 2022
  • This study was carried out with the aim of analyzing the development and functional changes of Webdewey, which has become a basic tool of classification learning, analyzing it in terms of usability for learners, and suggesting specific ways to improve WebDewey's usability. In order to achieve this research objective, the concepts and principles of UI and usability were first laid out, and Webdewey's structure and key functions were analyzed. Since then, Webdewey's media changes and periodical feature changes have been analyzed. In addition, an opinion survey was conducted on the usability of WebDewey among learners who used WebDewey in the learning process, and proposed ways to improve WebDewey's usability based on the implications and direction of improvement derived from it. In terms of UI, proposals have been made to introduce display methods, visualization devices, the advantages of printed versions, and the development of Korean versions. In terms of the 'Create built number' function, suggestions have been made to improve usability in terms of basic number selection, composite route guidance and error message provision, new reference and route construction, screen and button design, and built-number component guidance.