• Title/Summary/Keyword: Composite Foundation

Search Result 386, Processing Time 0.026 seconds

On snap-buckling of FG-CNTR curved nanobeams considering surface effects

  • Zhang, Yuan Yuan;Wang, Yu X.;Zhang, Xin;Shen, Huo M.;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.293-304
    • /
    • 2021
  • The aim of this paper is to analyze the nonlinear bending of functionally graded (FG) curved nanobeams reinforced by carbon nanotubes (CNTs) in thermal environment. Chen-Yao's surface elastic theory and geometric nonlinearity are also considered. The nanobeams are subjected to uniform loadings and placed on three-parameter substrates. The Euler-Lagrange equations are employed to deduce the equations of equilibrium. Then, the asymptotic solutions and boundary value problems are analytically determined by utilizing the two-step perturbation technique. Finally, the effects of the surface parameters, geometric factors, foundation stiffness, volume fraction, thermal effects and layout type of CNTs on the nonlinear bending of the nanobeams are discussed.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory

  • Zhou, Linyun;Najjari, Yasaman
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.725-734
    • /
    • 2022
  • In this paper, buckling analyses of nanocomposite plate reinforced by Graphen platelet (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nanocomposite plate. The nanocomposite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing relations of strains-displacements and stress-strain, the energy equations of the plate are obtained and using Hamilton's principle, the governing equations are derived. The governing equations are solved based on analytical solution. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results show that with increasing GPLs volume percent, the buckling load increases. In addition, elastic medium can enhance the values of buckling load significantly.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Flexoelectric effect on buckling and vibration behaviors of piezoelectric nano-plates using a new deformation plate theory

  • Bui Van Tuyen;Du Dinh Nguyen;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.709-725
    • /
    • 2023
  • This paper uses a new type of deformation theory to establish the free vibration and static buckling equations of nanoplates resting on two-parameter elastic foundations, in which the flexoelectric effect is taken into account. The proposed approach used in this work is not only simpler than other higher-order shear deformation theories but also does not need any shear correction coefficients to describe exactly the mechanical responses of structures. The reliability of the theory is verified by comparing the numerical results of this work with those of analytical solutions. The results show that the flexoelectric effect significantly changes the natural frequency and the critical buckling load of the nanoplate compared with the case of neglecting this effect, especially when the plate thickness changes and with some different boundary conditions. These are new results that have not been mentioned in any publications but are meaningful in engineering practice.

Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

  • Boyan Zhang;Siyu Qian;Bo Peng;Bo Su;Zhuang Peng;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

Usefulness of Flow Composite Image in Raynaud Scan ($^{201}Tl$) ($^{201}Tl$을 이용한 레이노 검사에서 동적 Composite 영상의 유용성)

  • Kim, Dae-Yeon;Shin, Gyoo-Seol;Oh, Eun-Jung;Kim, Gun-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.101-104
    • /
    • 2010
  • Purpose: Raynaud scan is divided to flow, blood pool and local-delay image. Usually, we evaluate comparison through blood pool and local-delay image. We will evaluate about usability when comparative observe blood image and local-delay image in Raynaud scan that used $^{201}Tl$ as making flow image to one sheet of images. Materials and Methods: We have selected 29 Raynaud phenomenon patients aged 14~68 years who visited department of vascular surgery between Feb. 2008 and Aug. 2009. An intravenous injection $^{201}Tl$ of 111 MBq (3 mCi) to opposite side diagonal line limbs above an internal auditing department. Equipment used Philips gamma camera forte A-Z, and collimator used LEHR. Matrix size set up to each $64{\times}64$, $128{\times}128$, $256{\times}256$ and zoom factor used to full field. Protocol of dynamic is 2 second to 155 frames. Blood pool and delay count to 300 second. We set up ROI by a foundation to data acquired in PEGASYS processing program. Each results were analyzed with the SPSS 12.0 statistical software. Results: Each averages of count ratio (Rt / Lt) to have been given at composite image, a blood pool image, delay images analyzed at Raynaud phenomenon patients is $1.25{\pm}0.39$, $1.20{\pm}0.33$, $1.11{\pm}0.17$. The sample analysis results of blood pool image and delay image contented itself with p<0.029. Also, there don't have been each difference, and blood pool image, delay image regarding composite image was able to know. Conclusion: We were able to give help for comparison to evaluate a blood pool image and a local delay image at the Raynaud scan which used $^{201}Tl$ while making a flow image to one sheet image. Identification to be visual too was possible. If you are proceeded a researcher that there was further depth, you are more appropriate for, and you may get useful information.

  • PDF

Biomechanical Comparison during Isolation Movement in B-boy and K-pop Dancers (B-boy와 K-pop 댄서 중심으로 한 분리 동작의 생체역학적 비교)

  • Jang, Young Kwan;Hong, Su Yeon;Jang, In Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The purpose of this study was to clarify the differences between the K-pop and B-boy dancers'characteristics based on the biomechanical variables through the isolation movement by independent variable t-test using spss 18.0. As a result, first, the CoM composite displacement of the K-pop dancer was larger than that of the B-boy(p<.05) in phase1 and phase2. Second, in phase2 and phase3, the movement speed of CoM was faster in K-pop dancer than in B-boy(p<.05). Third, in phase1, the planar angle between the body and pelvis was greater in the right planar angle of the K-pop dancer, while in the phase2 and phase3, the left planar angle of the B-boy was larger(p<.05). Fourth, the composite hip joint moments of B-boy were larger than those of K-pop in phase1, However, K-pop dancers showed greater moments in phase2, phase3 and phase4, and ankle joint moments in phase3(p<.05). Thus, even with the same isolation, we found that K-pop and B-boy dancers performed differently.