• 제목/요약/키워드: Composite Effect

검색결과 4,572건 처리시간 0.026초

The Bending Analysis of Three Phase Polymer Composite Plate Reinforced by Glass Fiber and Titanium Oxide Particles Including Creep Effect

  • Duc, Nguyen Dinh;Minh, Dinh Khac;VanThu, Pham
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.360-365
    • /
    • 2010
  • Three phase composite materials are widely used in the shipbuilding industry. When reinforced with fiber and particle, the physical and mechanical properties of polymer composite materials are improved. This paper presents the bending analysis of a three phase composite plate with an epoxy matrix, reinforced glass fiber and titanium oxide particles including creep effect when shear stress is taken into account. The obtained results indicate that creep strains lead to compression in the composite material. Introducing reinforced fibers and particles reduces the plate's deflection, when increasing the stretch coefficient allows the calculation of creep deflection during a long loading period.

굽힘 하중 하에서의 2-D Biaxial Braided 중공형 복합재료의 거동 (Behavior of 2-D Biaxial braided hollow composite under bending)

  • 서거원;임동진;윤희석
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.12-16
    • /
    • 2000
  • This study is about the effect of braiding on the 2-D biaxial braided hollow composite(BD) compared with unidirectional hollow composite(UD). The specimens were made of T700S Carbon/Epoxy prepreg and T700S dried Carbon yarns. Fiber volume fraction of UD and BD was obtained experimentally and analytically. Fiber volume fraction of BD was derived based on unit cell of braiding yarn section. Bending test was executed to investigate the effect of braiding part. The result of experiment and analysis of fiber volume fraction has good agreement. Bending strength of BD is about 20% higher than that of UD.

  • PDF

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop;Kim, Nam-Il;Shin, Dong Ku
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.355-376
    • /
    • 2007
  • The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.

Effect of delamination on vibration characteristic of smart laminated composite plate

  • Shankar, Ganesh;Varun, Jayant Prakash;Mahato, P.K.
    • 항공우주시스템공학회지
    • /
    • 제13권4호
    • /
    • pp.10-17
    • /
    • 2019
  • This study is concerned with a numerical analysis based on the finite element method to describe the effect of midplane delamination in smart laminated composite plate structures. A new finite element model for centrally located delamination and healthy section was developed and coded in Matlab. The transient analysis of delaminated composite plate with integrated Active Fiber Composite (AFC) was investigated in the present article. The formulation of the governing equation was based on the minimum total potential energy approach. The Newmark time integration technique was employed to solve the differential equations. A parametric study on the effects of boundary conditions and AFC patch location, in presence of delamination on the laminated plate were studied.

Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load

  • Zhang, Jinquan;Han, Bing;Xie, Huibing;Yan, Wutong;Li, Wangwang;Yu, Jiaping
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.435-451
    • /
    • 2021
  • Shear lag effect was a significant mechanical behavior of steel-concrete composite beams, and the effective flange width was needed to consider this effect. However, the effective flange width is mostly determined by static load test. The cyclic vehicle loading cases, which is more practical, was not well considered. This paper focuses on the study of shear lag effect of the concrete slab in the negative moment region under fatigue cyclic load. Two specimens of two-span steel-concrete composite beams were tested under fatigue load and static load respectively to compare the differences in the negative moment region. The reinforcement strain in the negative moment region was measured and the stress was also analyzed under different loads. Based on the OpenSees framework, finite element analysis model of steel-concrete composite beam is established, which is used to simulate transverse reinforcement stress distribution as well as the variation trends under fatigue cycles. With the established model, effects of fatigue stress amplitude, flange width to span ratio, concrete slab thickness and shear connector stiffness on the shear lag effect of concrete slab in negative moment area are analyzed, and the effective flange width ratio of concrete slab under different working conditions is calculated. The simulated results of effective flange width are compared with calculated results of the commonly used specifications, and it is found that the methods in the specifications can better estimate the shear lag effect in concrete slab under static load, but the effective flange width in the negative moment zone under fatigue load has a large deviation.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite using Acoustic Emission Technique)

  • 이진경;박영철;구후택;박동성;이규창
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.275-282
    • /
    • 2002
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 고온파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite at High Temperature using Acoustic Emission Technique)

  • 이진경;박영철;강동현;박동성;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.72-77
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

  • PDF

Structural design of steel fibre reinforced concrete in-filled steel circular columns

  • Eltobgy, Hanan H.
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.267-282
    • /
    • 2013
  • This paper presents the behavior and design of axially loaded normal and steel fiber reinforced concrete in-filled steel tube (SFRCFT) columns, to examine the contribution of steel fibers on the compressive strength of the composite columns. Non-linear finite element analysis model (FEA) using ANSYS software has been developed and used in the analysis. The confinement effect provided by the steel tube is considered in the analysis. Comparisons of the analytical model results, along with other available experimental outputs from literature have been done to verify the structural model. The compressive strength and stiffness of SFRC composite columns were discussed, and the interpretation of the FEA model results has indicated that, the use of SFRC as infill material has a considerable effect on the strength and stiffness of the composite column. The analytical model results were compared with the existing design methods of composite columns - (EC4, AISC/LRFD and the Egyptian code of Practice for Steel Construction, ECPSC/LRFD). The comparison indicated that, the results of the FEA model were evaluated to an acceptable limit of accuracy. The code design equations were modified to introduce the steel fiber effect and compared with the results of the FEA model for verification.