• 제목/요약/키워드: Composite Cylindrical Shell

검색결과 175건 처리시간 0.027초

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M.;Kharratzadeh, M.
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.305-313
    • /
    • 2019
  • Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.

Buckling conditions and strengthening by CFRP composite of cylindrical steel water tanks under seismic load

  • Ali Ihsan Celik;Mehmet Metin Kose;Ahmet Celal Apay
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.97-111
    • /
    • 2024
  • In this paper, buckling conditions and retrofitting of cylindrical steel water storage tanks with different roof types and wall thicknesses were investigated by using finite element method. Four roof types of cylindrical steel tanks which are open-top, flat-closed, conical-closed and torispherical-closed and three wall thicknesses of 4, 6 and 8 mm were considered in FE modeling of cylindrical steel tanks. The roof shapes significantly affect load distribution on the tank shell under the seismic action. Composite FRP materials are widely used for winding thin-walled cylindrical steel structures. The retrofitting efficiency of cylindrical steel water tank is tested under the seismic loading with the externally bonded CFRP laminates. In retrofitting of cylindrical steel tank, the CFRP composite material coating method was used to improve of seismic performance of cylindrical steel tanks. ANSYS software was used to analyze the cylindrical steel tanks and maximum equivalent (von-Mises) and directional deformation were obtained. Equivalent (von-Mises) stresses significantly decreased due to the coating of the tank shell with FRP composite material. In thin-walled steel structures, excessive stress causes buckling and deformations. Therefore, retrofitting led to decrease in stress, reductions in directional and buckling deformation of the open-top, flat-closed, conical-closed and torispherical-closed tanks.

마이크로 역학기반 GFRP 원통형 적층 쉘 구조의 변위 해석 (Deflection Analysis of Laminated Composite Cylindrical Shell Structures Based on Micro-Mechanics)

  • 김규동;이상열
    • 복합신소재구조학회 논문집
    • /
    • 제4권4호
    • /
    • pp.15-21
    • /
    • 2013
  • This study carried out finite element deflection analysis of cylindrical shell structures made of composite materials, which is based on the micro-mechanical approach for different fiber-volume fractions. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. New results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite shell structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

실린더형 셸 구조물의 모드 특성 및 진동제어 : 공기중 및 수중 실험결과 비교 (Modal Characteristics and Vibration Control of Cylindrical Shell Structure : Experimental Results Comparison in the Air and Water)

  • 손정우;권오철;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.899-906
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and macro-fiber composite(MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

Spatially filtered multi-field responses of piezothermoelastic cylindrical shell composites

  • Tzou, H.S.;Bao, Y.
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.111-124
    • /
    • 1996
  • New active "intelligent" structural systems with integrated self-sensing, diagnosis, and control capabilities can lead to a new design dimension for the next generation high-performance structures and mechanical systems. However, temperature effects to the piezoelectric transducers are not fully understood. This paper is concerned with a mathematical modeling and analysis of a laminated piezothermoelastic cylindrical shell composite exposed to mechanical, electric, and thermal fields. Generic shell equations and solution procedures are derived. Contributions of spatial and time components in the mechanical, electric, and temperature excitations are discussed, and their analytical solutions derived. A laminated cylindrical shell composite with fully distributed piezoelectric layers is used in a case study; its multi-field step and impulse responses are investigated. Analyses suggest that the fully distributed actuators are insensitive to even modes due to load averaging and cancellation. Accordingly, these even modes are filtered from the total response and only the modes that are combinations of m = 1, 3, 5, ${\cdots}$ and n = 1, 3, 5, ${\cdots}$ participating in dynamic response of the shell.

원통형 복합재 격자구조체의 구조안전성 평가 기법 연구 (Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures)

  • 임재문;강승구;신광복;이상우
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.338-342
    • /
    • 2017
  • 본 논문에서는 원통형 복합재 격자구조체의 구조안전성 평가 기법에 대해 연구를 수행하였다. 구조안전성 평가는 유한요소해석을 통해 수행하였다. 구조안전성 평가를 위한 최적의 유한요소를 확인하기 위해 원통형 복합재 격자구조체 유한요소모델은 빔, 쉘 그리고 솔리드 요소를 사용해 생성하였다. 쉘과 솔리드 모델의 유한요소 해석결과는 서로 유사하게 발생되었다. 그러나 빔 모델의 경우, 쉘과 솔리드 모델의 결과와 큰 차이가 발생하였다. 이것은 빔 요소가 원통형 복합재 격자구조체 섬유 비교차부의 기계적 물성저하를 고려하지 못하기 때문이다. 원통형 복합재 격자구조체의 구조안전성 평가를 위한 유한요소해석은 쉘 또는 솔리드 요소를 사용해야 하는 것을 확인하였다.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermo-mechanical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.351-365
    • /
    • 2019
  • In this paper, free vibration of Cooper-Naghdi micro sandwich cylindrical shell with saturated porous core and reinforced carbon nanotube (CNT) piezoelectric composite face sheets is investigated by using first order shear deformation theory (FSDT) and modified couple stress theory (MCST). The sandwich shell is subjected to magneto-thermo-mechanical loadings with temperature dependent material properties. Energy method and Hamilton's principle are used for deriving of the motion equations. The equations are solved by Navier's method. The results are compared with the obtained results by the other literatures. The effects of various parameters such as saturated porous distribution, geometry parameters, volume fraction and temperature change on the natural frequency of the micro-sandwich cylindrical shell are addressed. The obtained results reveal that the natural frequency of the micro sandwich cylindrical shell increases with increasing of the radius to thickness ratio, Skempton coefficient, the porosity of the core, and decreasing of the length to radius ratio and temperature change.

전좌굴을 고려한 복합적층원통셸의 거동해석 (Behavior Analysis of Laminated Composite Cylindrical Shells with Prebuckling)

  • 이종선
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.150-156
    • /
    • 2000
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression and lateral pressure are considered for laminated composite cylindrical shells with the ratios of length to radius. The shell walls are made of a laminate with several symmetric ply orientations. The study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered. Review the influence of nonlinear prebuckling for the buckling loads, the difference between the actual and classical buckling loads are increased as the increments with the ratios of length to radius, for which is applied the axial compression, but almost same for the lateral pressure.

  • PDF

비선형전좌굴을 고려한 복합적층원통셸의 좌굴해석 (Buckling Analysis of Laminated Composite Cylindrical Shells with Nonlinear Prebuckling)

  • 원종진;이종선
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.13-20
    • /
    • 1994
  • The effects of prebuckling on the buckling of laminated composite cylindrical shells are investigated. Both axial compression and lateral pressure are considered for laminated composite cylindrical shells with length to radius ratios usually associated with container vessels. The shell walls are made of a laminate with several symmetric ply orientations. The study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when prebuckling displacements are neglected.

  • PDF