• Title/Summary/Keyword: Composite Blade

Search Result 264, Processing Time 0.024 seconds

Two-Blade Guillotine Technique for Nipple Graft Harvest

  • Wong, Allen Wei-Jiat;Chew, Khong-Yik;Tan, Bien-Keem
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.449-452
    • /
    • 2017
  • The nipple-sharing technique for nipple reconstruction offers excellent tissue matching. The method used for nipple graft harvesting determines the quality of the graft and hence, the success of nipple sharing. Here, we described a guillotine technique wherein the nipple is first transfixed with 2 straight needles to stabilise it. Two No. 11 blades are then inserted in the center and simultaneously swept outwards to amputate the distal portion of the nipple. This technique provides good control, resulting in a very evenly cut base. The recipient bed is deepithelialized thinly, and the nipple graft is inset with interrupted 8-0 nylon sutures under magnification. Being a composite graft, it is protected with splint dressings for 6 weeks, and the dressing is regularly changed by the surgeon. The height of the nipple grafts ranges from 4 to 8 mm. This technique was performed in 9 patients with an average follow-up of 2.9 years (range, 1-4.5 years). Apposition between the nipple graft and its bed is crucial for the success of this technique. When correctly applied, we observed rapid revascularization of the graft.

Propeller Performance Analysis for Human Powered Aircraft (인간동력 항공기용 프로펠러 성능해석)

  • Park, Poo-Min
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.193-201
    • /
    • 2013
  • Propeller is an important component of Human Powered Aircraft (HPA) propulsion system. HPA uses large diameter low rotational speed propeller to get high propeller efficiency. The propeller was designed by HPA propeller designing program. The propeller pitch is adjustable by rotating the blade axis angle at ground. Performance of the propeller for various parameters are analysed by the same program used for design. Off-design condition performance was also checked including pilot power change and flight speed change. The propeller was manufactured in ultra-light structure using carbon composite material down to 950g. The propeller was ground tested on ironbird and installed on KARI HPA. Finally the HPA flew 291m with this propeller.

Evaluation for the Numerical Model of a Micro-Bubble Pump (미세버블펌프 수치모델평가 및 검증)

  • LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.121-126
    • /
    • 2016
  • Hydraulic performance of a micro-bubble pump has been analyzed by numerical simulation and experimental measurements. Flow recirculation apparatus between the pump inlet and outlet reserviors has been adopted to measure pump performance according to flow conditions sequentially. To analyze three-dimensional flow field in the micro-bubble pump, general analysis code, CFX, is employed. SST turbulence model is employed to estimate the eddy viscosity and compared the pump performance to k-${\varepsilon}$ model. Unstructured grids are used to represent a composite grid system including blade, casing and inlet casing. It is found that the numerical model used in the present study is effective to evaluate the pump performance. From the numerical simulation, low velocity region due to pressure loss is decreased where pump efficiency has maximum value. Detailed flow field inside the micro-bubble pump is also analyzed and compared.

CAD/CAM System for 5-Axis Machining of Marine Propeller (프로펠러 5축 가공을 위한 CAD/CAM 시스템)

  • Jae-Woong Youn;Jong-Hwan Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.51-62
    • /
    • 1998
  • In this paper, a CAD/CAM system for 5-axis machining of model propeller is introduced. This system has been developed under the environment of personal computer and Windows NT. In order to enhance the productivity, existing text-based design S/W was integrated into this graphic-based system. Non-Uniform Rational B-Spline method is used to represent the sculptured surface of propeller blades and hub using point data, and surface blending between blade and hub is realized in this system. For 5-axis machining of sculptured surface, tool/work collision and interference are checked and inverse kinematic analysis is performed to make NC data. In addition, tool and workpiece are animated on the PC monitor by preparing NC verification module. Finally, optimal cutting conditions are determined empirically and those cutting conditions are integrated into this S/W so that the whole process from design to machining can be done automatically.

  • PDF

Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers (전산유체역학을 이용한 항공기 프로펠러 공력특성 연구)

  • Cho, Kyuchul;Kim, Hyojin;Park, Il-Ju;Jang, Sungbok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.917-926
    • /
    • 2012
  • The analysis of aerodynamic characteristics for aircraft propellers is studied to develop high efficiency composite propellers. It is to verify the accuracy and reliability of predicting the efficiency characteristics of aircraft propellers by applying nonlinear numerical analysis. The numerical simulation method incorporated the CFD code, which is based on RANS (Reynolds Averaged Navier-Stocks) equation. The study includes a comparative analysis between the numerical simulation results and the wind tunnel test results of the full-scale aircraft propeller. The comparison shows that thrust and power coefficients of the propeller calculated by nonlinear numerical analysis are higher than those based on the results generated from the wind tunnel test. The efficiency of the propeller calculated by numerical analysis matches closely to the efficiency based on the wind tunnel test results. The verification results are analyzed, then, will be used in optimizing the design and manufacture of the subject aircraft propeller studied.

EFFECTS OF CHOPPED GLASS FIBER ON THE STRENGTH OF HEAT-CURED PMMA RESIN

  • Lee Sang-Il;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.589-598
    • /
    • 2001
  • The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured PMMA resin using glass fibers, have been suggested over the years. The aim of the present study was to investigate the effect of short glass fibers treated with silane coupling agent on the transverse strength of heat-polymerized PMMA denture base resin. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with PMMA powder in conventional mixer whose blade was modified to be blunt. Composite of glass fiber($11{\mu}m$ diameter, 3mm & 6mm length, silane treated) and PMMA resin was made. Transverse strength and Young's modulus were estimated. Glass fibers were incorporated with 1%, 3%, 6% and 9% by weight. Plasticity and workability of dough was evaluated. Fracture surface of specimens was investigated by SEM. The results of this study were as follows 1. 6% and 9% incorporation of 3mm glass fibers in the PMMA resin enhanced the transverse strength of the test specimens(p<0.05). 2. 6% incorporation of 6mm glass fibers in the PMMA resin increased transverse strength, but 9% incorporation of it decreased transverse strength(p<0.05). 3. When more than 3% of 3mm glass fibers and more than 6% of 6mm glass fibers were incorporated, Young's modulus increased significantly(p<0.05). 4. Workability decreased gradually as the percentage of the fibers increased. 5. Workability decreased gradually as the length of the fibers increased. 6. In SEM and LM, there was no bunching of fibers and no shortening of fibers.

  • PDF

Computation of Energy Release Rates for Slender Beam through Recovery Analysis and Virtual Crack Closure Technique (차원 복원해석과 가상균열닫힘 기법을 이용한 종방향 균열을 가진 세장비가 큰 보의 에너지 해방률 계산)

  • Jang, Jun Hwan;Koo, Hoi-Min;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, computation results of reducible modeling, stress recovery and energy release rate were compared with the results of VABS, Virtual Crack Closure Technique. The result of stress recovery analysis for 1-D model including the stiffness matrix is compared with stress results of three-dimensional 3-D FEM. Energy release rate of composite beam with longitudinal cracks is calculated and compare verifications of numerical analysis results of 3-D FEM and VABS. The procedure of calculating energy release rate through dimensional reduction and stress recovery is intended to be efficient and be utilized in the life-cycle of high-altitude uav's wing, wind blades and tilt rotor blade.

HPA Structure Design and Power Measurement (인간동력항공기 구조설계와 동력측정)

  • Lee, Chung-Ryul;Park, Ju-Won;Go, Eun-Su;Choi, Jong-Soo;Kim, In-Gul;Kim, Byoung-Soo
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • The process of designing and building a human-powered aircraft (HPA) and its performance analysis are introduced in this paper. Light Bros, the Chungnam National University HPA team, has developed Volante, a HPA, to compete in the 2012 exhibition of human-powered aircraft hosted by Korea Aerospace Research Institute. The power train system is composed of a two-blade propeller and Bevel-type gear and the ground test bed is built to simulate the operation. A study has been made to find a efficient propeller based upon the test result of thrust and power available from a pilot under various propeller conditions and running time. The load and structural analysis is conducted for the glider-shaped wing made of composite material which has very high aspect ratio. The spar is analyzed using finite element modeling followed by the comparison of its displacement and strain on structural test. As a result, the performance and safety is confirmed.

Design Algorithm of Flexible Propeller by Fluid-Structure Interactive Analysis (유체-구조 반복해석법에 의한 유연 프로펠러의 설계 알고리듬 개발)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.528-533
    • /
    • 2012
  • Flexible composite propellers are subject to large deformation under heavy loading, and hence the hydrodynamic performance of deformed propeller might deviate from that of the metallic propeller under negligible deformation. To design the flexible propeller, it is therefore necessary to be able to evaluate the structural response of the blades to the hydrodynamic loadings, and then the influence of the blade deformation upon the hydrodynamic loadings. We use the lifting-surface-theory-based propeller analysis and design codes in solving the hydrodynamic problem, and the finite-element-method program formulated with 20-node iso-parametric solid elements for the analysis of the structural response. The two different hydrodynamic and structural programs are arranged to communicate through the carefully-designed interface scheme which leads to the derivation of the geometric parameters such as the pitch, the rake and the skew distributions common to both programs. The design of flexible propellers, suitable for manufacturing, is shown to perform the required thrust performance when deformed in operation. Sample design shows the fast iteration scheme and the robustness of the design procedure of the flexible propellers.

STRENGTH OF GLASS FIBER REINFORCED PMMA RESIN AND SURFACE ROUGHNESS CHANGE AFTER ABRASION TEST

  • Lee, Sang-Il;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Yun, Suk-Dae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.310-320
    • /
    • 2007
  • Statement of the problem. The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured acrylic resin using glass fibers, have been suggested over the years. But problems such as poor workability, rough surface, poor adhesion of glass fiber resin complex are not solved yet. Purpose. The aim of the present study was to investigate the effect of short glass fibers on the transverse strength of heat-polymerized denture base acrylic resin and roughness of resin complex after abrasion test. Material and methods. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with acrylic resin powder in conventional mixer with a non-cutting blade, to produce the glass fiber($10{\mu}m$ diameter, 3mm length, silane treated) resin composite. Glass fibers were incorporated at 0%, 3%, 6% and 9% by weight. Transverse strength were measured. After abrasion test, surface roughness was evaluated and scanning electron microscope view was taken for clinical application. Results. 1. 6% and 9% incorporation of 3mm glass fibers in the acrylic resin enhanced the transverse strength of the test specimens(p<0.05). 2. Before abrasion test, incorporation of 0%, 3%, 9% glass fiber in the resin showed no dirrerence in roughness statisticaly(p>0.05). 3. After abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically(p>0.05). 4. In SEM, surface roughness increased as the percentage of the fibers increased. 5. In the areas where glass fiber bunchings are formated, a remarkably high roughness was noticed. Conclusion. 6% and 9% addition of silane-treated short glass fibers into denture base acrylic resin increased transverse strength significantly. Before and after abrasion test, incorporation of 0%, 3%, 6% glass fiber in the resin showed same surface roughness value statistically.