• 제목/요약/키워드: Composite Adherend

검색결과 43건 처리시간 0.023초

Single Lap Riveted Joint의 베어링 거동 연구 (Study on Bearing Response of Single Lap Riveted Joint)

  • 허광수;윤성호;정종철;이상진;김정석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.326-331
    • /
    • 2005
  • In this study, bearing response in single lap riveted joint is investigated by menas of single lap shear specimens with different types of adherend and fastener. Single lap shear specimen consists of adherend of SUS403 and carbon fabric/epoxy composite. Rivet of Avdel 2691 with 9.6mm diameter is used. Two types of fastener in single lap riveted joint are considered. One is a single lap shear specimen with single fastener, and the other is a single lap shear specimen with double fasteners. Especially, in case of single lap shear specimen with single fastener, the width of the specimen is varied as 2D, 3D, 4D, 6D at a fixed edge distance of 3D. Also the edge distance of the specimen is varied as 1.0D, 1.5D, 2.0D, 2.5D, 3.0D at a fixed width of 4D. In case of single lap shear specimen with double fasteners, two types of specimen are considered. One is a specimen with the width of 6D and edge distance of 3D. The other is a specimen with the width of 4D and edge distance of 2D. Here D designates the hole diameter for riveted joint.

  • PDF

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force

  • Abderezak, Rabahi;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • 제11권2호
    • /
    • pp.91-109
    • /
    • 2022
  • This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.

Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive

  • Tayeb, Bensatallah;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • 제9권2호
    • /
    • pp.133-153
    • /
    • 2020
  • In this paper, an improved theoretical interfacial stress and slip analysis is presented for simply supported composite steel-concrete beam bonded with an adhesive. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of elements has been noted in the results. It is observed that large shear is concentrated and slip at the edges of the composite steel-concrete. Comparing with some experimental results from references, analytical advantage of this improvement is possible to determine the normal and shear stress to estimate exact prediction of normal and shear stress interfacial along span between concrete and steel beam. The exact prediction of these stresses will be very important to make an accurate analysis of the mode of fracture. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite steel-concrete beam. This research is helpful for the understanding on mechanical behavior of the connection and design of such structures.

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Bedia, E.A. Adda
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.413-429
    • /
    • 2016
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

기계 가공된 복합재료 키 조인트의 강도 연구 (A Study on Strength of the Machined Composite Key Joint)

  • 정강우;박용빈;최진호;권진회
    • Composites Research
    • /
    • 제25권2호
    • /
    • pp.40-45
    • /
    • 2012
  • 복합재료가 기계부품, 항공기 구조물에 폭 넓게 적용됨에 따라, 복합재료 구조물에서 가장 취약한 복합재료 체결부의 설계는 매우 중요한 연구 분야로 대두되고 있다. 본 논문에서는 기계적 체결방법의 문제점으로 발생하는 원공주위의 높은 응력집중현상을 감소시키기 위하여, 복합재료 키 조인트(composite key joint)를 제안하였고 파손강도를 평가하였다. 제안된 복합재료키 조인트 체결부의 파손 판정을 위해서 파손지수(failure index)와 파손영역법(damage area theory)이 각각 적용되었다. 실험 결과로부터 복합재료 키 조인트는 기계적 체결부의 파손강도보다 93% 높은 값을 가짐을 볼 수 있었고, 복합재료 키 홈 깊이(key slot depth)가 0.88 mm이고 끝단 길이(edge length)가 20 mm일 때 가장 높은 파손하중 나타내었다.

접착제의 두께와 열 응력에 따른 조인트의 토크 특성 (Effects of the Adhesive Thickness and Residual Thermal Stress on the Torque Capacity of Turbular Single Lap Joints)

  • 최진호;이대길
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1841-1852
    • /
    • 1992
  • 본 연구에서는 Fig.1과 같이 원형튜브 형태로된 시편과 실린더 형태의 시편을 Single Lap Joint의 형태로 접착하여 접착제의 두께에 대한 정적 비틀림 강도특성을 실험하였으며, 접착제의 경화시 외부에서 가해주는 열로 인한 열 잔류응력의 영향에 대한 연구를 수행하였다. 또한 이론적인 해석과 상용 프로그램인 ANSYS를 이용하여 유한요소해석을 병형하여 실험결과와 비교 검토하였다.

후판 단일 겹침 접착 조인트의 파손강도에 관한 연구 (A Study on Failure Strength of Single Lap Adhesive Joint with Thick Adherend)

  • 박재현;최진호;권진회
    • 한국항공우주학회지
    • /
    • 제38권2호
    • /
    • pp.111-118
    • /
    • 2010
  • 복합재료 구조물에서 조인트 부위는 매우 취약한 부분이다. 본 논문에서는 후판 알루미늄-알루미늄 조인트 및 복합재-알루미늄 조인트를 접착제로 접합하여 제작한 다음, 인장실험을 수행하여 파손형태를 고찰하였다. 또한, 항복 변형률에 기초한 수정 파손영역 이론을 제안하였으며, 파괴모드별 파손하중과 상호 비교하였다. 후판 알루미늄-알루미늄 조인트와 복합재-알루미늄 조인트의 파손강도를 동일한 파손기준값을 적용하여 예측하였으며, 제작된 14종류의 시편에서는 최대 19.3% 오차범위 내에서 파손강도를 예측할 수 있었다.

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams

  • Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes;Redha, Yeghnem
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.435-454
    • /
    • 2011
  • Bonding composite materials to structural members for strengthening purpose has received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs. In this paper, a numerical solution using finite - difference method is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends with different thinning profiles. These latter, can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.